Black and Tan

Project Planning Timeline

Team Member Roles

Nate Cleveland

Producer

Primary:
Sound / AI programming.

Secondary:
Client network handler, multithreading.

Kevin King

Technical Director

Primary:
Client/Server framework, TCP/IP socket programming.

Secondary:
Server core engine.

Dan Valerius

Game Designer

Primary:
Tools programming, physics.

Secondary:
Server core engine.

Brad Wiggins

Lead Tester

Primary:
Lobby module

Secondary:
Menu module, statistics display.

Matt Phillips

Product Manager

Primary:
Client core engine, art.

Secondary:
Menu module, error handling.

Project Overview

Week 1

1/05/02 – 1/11/02

Client Framework

Kevin King
Graphics

Kevin King

Module Switcher

Kevin King
Input (Keyboard)

Kevin King

Error Handling

Matt Phillips
Client Framework:

.DSW project file (MSVC version of .MAK) including every empty main module in the game.

Graphics:

DirectDraw wrapper that handles initiating DirectDraw, releasing DirectDraw, creating surfaces, releasing surfaces, clipping, flipping the back buffer, and other functionality.

Module Switcher:

Pseudo state-machine that allows modules to call their own clean state, call the setup state of another module, and then set a function pointer to give it control. Also zeroes static memory that’s used in the module for variables.

Input (Keyboard):

DirectInput module that behaves similar to the DirectDraw display wrapper. Most of the module is handled via the main-loop or privately in the class, so the only code that most modules will need is to read the input buffer.

Error Handling:

A module that has simple public methods so that other modules can write to debug and error logs when things go wrong.

Week 2

1/12/02 - 1/18/02

GDD

All
Week 3

1/19/02 - 1/25/02

TDD

All
Week 4

1/26/02 – 2/01/02

Sound Alpha

Nate Cleveland
Input (Mouse)

Matt Phillips

Interface Elements

Matt Phillips

Sound Alpha

DirectSound wrapper that behaves similar to both the DirectDraw and DirectInput wrapper.

Input (Mouse):

The mouse part of the DirectInput wrapper

Interface Elements:

Button and textbox classes that will be used in both the menu and lobby modules.

Week 5

2/02/02 - 2/08/02

TCP/IP Pre-Alpha

Kevin King
HUD Alpha*

Matt Phillips
Lobby Alpha*

Brad Wiggins

Sound Beta

Nate Cleveland

TCP/IP Pre-Alpha:

TCP/IP Socket programming is how the server and clients will communicate. To constitute Pre-Alpha a simple Hello program will have to be in a working state on both the client and server.

HUD Alpha (Dependency- Interface Elements):

The HUD consists of both displaying in-game data, and allowing interactive customization (switching from one HUD specialized display to another, like from general, to score/stats). Alpha constitutes a working prototype that does not necessarily use the game’s data structures that will be affected real-time via the networking thread.

Lobby Alpha (Dependency- Interface Elements):

The lobby allows for both chat communication between the clients and the server, and allows the real-time game settings to be toggleable. In alpha the lobby must be able to simulate the chat portion of the module. Since the networking module will not be ready at this point in development, the lobby can simulate client-side a chat session.

Sound Beta:

In order to make beta the sound module must be able to startup, shutdown, play sound effects, and play entire tracks without error.

Week 6

2/09/02 - 2/15/02

Multithreading

Nate Cleveland
Multithreading:

The networking and sound modules must run independently of the game, so multithreading is required. In order to constitute Multithreading’s release candidate, it must have no bugs, and have a main application thread, a sound thread, and a networking thread.

Week 7

2/19/02 – 2/26/02

TCP/IPAlpha

Kevin King

TCP/IP Alpha:

To constitute alpha the TCP/IP module must be able to send and receive messages to and from the client and server. The server must also be able to bind ports to different clients, and be able to send it unique and broadcast messages.

Week 8 (Updated 3/13/02)

2/27/02 - 3/05/02

Menu Beta

Matt Phillips

Map file loading

Dan Valerius

A.I. Alpha*

Nate Cleveland
Map File Loading:

The client and the server are both able to read in maps with their graphical tiling, and map-specific information into the game data structures.

Menu Beta:

The menu module must be able to navigate through all menus in the game to reach Beta release.

A.I. Alpha (Dependency- Map File Loading, TCP/IP Alpha):

The A.I. the infrastructure of the A.I. is in place on the server. Bots must be able to be instantiated but they are not required to move correctly.

Week 9 (Updated 3/13/02)

3/06/02 - 3/12/02

HUD Beta

Matt Phillips

A.I. Beta*

Nate Cleveland

TCP/IP Beta

Kevin King

HUD Beta:

The HUD consists of both displaying in-game data, and allowing interactive customization (switching from one HUD specialized display to another, like from general, to score/stats). Beta constitutes a bug free fully working module.

A.I. Beta (Dependency- TCP/IP Beta):

Bots must now move semi-intelligently and obey the physics laws of the game.
TCP/IP Beta:

Beta release constitutes interfacing client and server side with all modules in the game that require networking services.

Week 10 (Updated 3/13/02)

3/13/02 – 3/19/02

Lobby Beta*

Brad Wiggins

Physics

Dan Valerius
Client core engine alpha

M. Phillips / N. Cleveland

Server core engine alpha

K. King / N. Cleveland
Lobby Beta (Dependency- TCP/IP Beta, Menu Beta):

The lobby must be able to set player’s team and other relevant data.

Physics:

All player vehicles must move realistically and accurately for the Physics milestone.

Client core engine alpha:

All of the client’s services, objects, and modules must be integrated into the client as a whole in a working, bug free manner. This does not include client to server interfaces. This also includes a cooperative effort to write game logic that uses the previously built modules to simulate the game client-side.

Server core engine alpha:

All of the server’s services, objects, and modules must be integrated into the client as a whole in a working, bug free manner. This does not include server to client interfaces. This also includes a cooperative effort to write the server’s logic that is able to run the game and lobby states.

Week 11

3/20/02 – 3/26/02

Missed Milestones

All

Week 12

3/27/02 – 4/02/02

Client Alpha

M. Phillips / N. Cleveland /

B. Wiggins
Server Alpha

K. King / D. Valerius
Client Alpha:

This includes all the requirements for the Client engine alpha, as well as network integration.

Server Alpha:

This includes all the requirements for the Server engine alpha, as well as network integration.

Week 13

4/03/02 – 4/09/02

Client Beta

M. Phillips / N. Cleveland /

B. Wiggins
Server Beta

K. King / D. Valerius

Client Beta:

This includes all the requirements for the Client beta, as well as the Client being “bug-free.”

Server Beta:

This includes all the requirements for the Server beta, as well as the Server being “bug-free.”

Week 14

4/10/02 - 4/16/02

Missed Milestones

All

Full Client

M. Phillips / N. Cleveland /

B. Wiggins
Full Server

K. King / D. Valerius
Missed Milestones:

Any milestones missed in the previous weeks must be made up this week. If not, the project’s final release date could be put in serious jeopardy.

Full Client:

The client is able to connect and play the game with minimal bugs and slowdowns.

Full Server:

The server is able to run the game with minimal bugs.

Week 15 (updated 3/13/02)

4/17/02 - 4/19/02

Testing Complete

All

Final Build / Installer

Kevin King

Testing Complete:

A thorough test to make sure even the most unplanned for actions will not result in bugs or crashes.

Final Build / Installer:

The game is burned to a CD with auto play. Upon insertion it runs the setup program that installs the game, adds a file to the windows registry to allow uninstall via Add/Remove Programs, and plays correctly.

Producer:

Nate Cleveland

Technical Director:
Kevin King

Game Designer:

Dan Valerius

Lead Tester:

Brad Wiggins

Product Manager:

Matt Phillips
