Black and Tan: Technical Design Document

February 4, 2002

Black and Tan

Technical Design Document

4I. Educational Requirements

4A.
Introduction

4B.
Summary

5II. Platform and Operating System

5A.
System Requirements

6III. External Code

6A.
Overview

6B.
DirectDraw

6C.
DirectInput

7D.
DirectSound

7E.
Win32

8IV. Control Loop

8A.
Introduction

8B.
Windows Setup

8C.
DirectX/Wrapper Setup

8D.
Main Loop

9E.
Shutdown

11V. Game Data

11A.
Game Mechanics

11B.
Objects

14C.
Data Flow

15D.
File Formats

17VI. Artificial Intelligence (Updated 2/4/02)

17A.
Introduction

17B.
Implementation

22C. Class Diagram.

22D. AI Data Flow

24VII. Physics and Statistics

24A.
Physics Design and Philosophy

24B.
Collisions

24C.
Movement

25D.
Physics Data Structures

26VIII. Multiplayer

26A.
Client

26B.
Server

26C.
Game Messages

27D.
Lobby Messages

29IX. User Interface

29A.
Control Overview

29B.
Control Scheme

30C.
Text Output

30D.
Buttons

31E.
Text Boxes

32F.
Menu

33G.
Lobby

33H.
HUD

35X. Art and Video

35A.
Introduction

35B.
Specifications

38XI. Graphics Engine

38A.
Introduction

38B.
Layout

42XII. Artist Instructions

42A.
Overview

43XIII. Sound and Music

43A.
Interface

45B.
External Use

45C.
Implementation

50D.
Class Diagram

51XIV. Multithreading

51A.
Introduction

52B.
Technical

52C.
Command Flow

53D.
Dangers

54XV. Development Tools: Map Editor

54A.
Introduction

54B.
Mechanics

55C.
Screenshot

55D.
Platform and Requirements

55E.
External Code

55F.
Control Loop

56G.
Object Data

57H.
Data Flow

60XVI. Risk Analysis

60A.
Overview

60B.
Client

60C.
Server

61XVII. Liability

61A.
Legal Disclaimer

62B.
Team Signoff

I. Educational Requirements

A. Introduction

Black and Tan meets and exceeds all educational requirements set by the “DigiPen Institute of Technology.” In lieu of the “hotseat” multiplayer requirement, our team will be writing a much more difficult client/server game. We are confident that the technical requirements for Black and Tan will provide us with the experience necessary to continue on to higher-level game courses at DigiPen.

B. Summary

Scrolling

Black and Tan is a top down, multi-directional, scrolling game. There is a main ground layer and a parallax layer above scrolling at a different rate. See the graphics section for in depth details.

AI

The AI in Black and Tan consists of Guided Missiles, which will find the nearest enemy and give chase. If the enemy is not hit, the missile will stay its course until another enemy is detected, and then attempt another collision (i.e. explosion). Since there are no computer controlled 'enemies' in Black and Tan, we do not feature any Artificial Intelligence for them. See AI section for in depth details.

Sound

Black and Tan will have four looped background tracks, and at least 20 static sounds. All sounds will be in high quality, non-compressed, stereo. More information can be found in the Sound and Music section.

Multiplayer

Black and Tan has a client server model, and will support up to 16 players via TCP/IP. Please refer to the Multiplayer section for further information.

II. Platform and Operating System

A. System Requirements

Required:

· Windows 98/2000

· Pentium III / Athlon 600 Mhz.

· 32 Mb Ram

· 50 Mb Hard Disk Space

· DirectX 8.0 or higher

· 4x CD-ROM Drive

· Broadband Internet Connection or 10 Mbps LAN

· 32 Mb Video Card

· Keyboard / Mouse

Optimal:

· Pentium III / Athlon 700 Mhz.

· 64 Mb Ram

· GeForce 2 / Voodoo 5 Video Card
III. External Code

A. Overview

To speed up development time we will be using DirectDraw, DirectSound, DirectInput, GDI, and the Win32 API. To maintain continuity between modules, all external code will be encapsulated in a wrapper called “game.” Each module within game will have all of its variables and methods stored within a class that can be called from anywhere within the project. Our wrapper will follow a naming convention to allow each team member to be able to use other member’s code without having to read through the entire module to check if he’s using it correctly. Every module must have an Init function that is called first, and a Release function that is called to release all dynamic memory and “shut down” the class. Finally, every wrapper call that release dynamic memory is guaranteed to be safe, and will not try to free null pointers. By promising error handling within the wrapper, all game related code will be easier to read, and will not be cluttered with non-game related code.

B. DirectDraw

We will be using DirectDraw 7.0 as our primary way of displaying things. All of the DirectDraw functionality we require will be wrapped within the game::display class. Our wrapper has already has been written and tested. For any module to draw they must first call a LoadBitmaps function that will setup all surfaces that are defined for that function. By calling game::display.LoadMenuBitmaps, the game module can call game::display.Draw on any bitmap within the game::display.bitmaps.menu structure. This, like all of our wrapper calls is safe, and will clip within the screen’s region assuring no out of bounds errors. When the menu module wants to hand control to another module (lobby), it simply calls game::display.FreeLobbyBitmaps and all the dynamic memory is freed safely. All DirectDraw specific calls our handled via our wrapper, so we can easily change DirectDraw versions if our specifications change mid-project.

C. DirectInput
Black and Tan will be using DirectInput 7 for mouse and keyboard input. Since its assumed each module will require input to operate, the only calls a module needs to make to our Input wrapper is for checking if specific keyboard keys and mouse buttons were pressed. We will be using function pointers that query specific actions, to allow a modular way of handling input. This way, we can have the player be able to use the ‘awsd’ keys to move the camera instead of moving his car when he’s dead without the use of if/else checks.

D. DirectSound

For our sound and music purposes we will be using the most current version of DirectSound (DirectSound’s latest version doesn’t have a version number). Our wrapper will handle the Initialization, Release, and Synchronization on its own. Any module can request any of our sounds to be played at any time, or change the looped track that is in the background. The naming convention is very similar to the DirectDraw wrapper, which will make reading code traversing multiple modules much easier then if each module handled DirectX in its own way.

E. Win32

We will be using some standard Win32 calls that are necessary for making a Windows application. On top of those, we will also be using GDI for displaying text. Our wrapper will also include a time wrapper that will be able to handle both low-resolution and high-resolution timers. Each frame, the wrapper will be called by our main message loop, so the only thing a module needs to do is call game::time.GetTime and it will return the time in ms in between the last frame and the current frame. All of Black and Tan’s code will rely on time based operations, to ensure the game runs properly on a variety of different class machines.

IV. Control Loop

A. Introduction

For our game to function we first have to setup Windows, and our DirectX/Win32 wrapper. By having our enter/exit code completely outside the body of our game’s main loops, our code will be more readable, and will be fast. The goal of the framework of Black and Tan is to encapsulate and modularize all of our code to make debugging easier, and to allow for future expansion.

B. Windows Setup

Because our game is in DirectX, we only have to make a couple calls to Windows before we allow DirectX and our code to take over. The first call we will make is to RegisterClass. This specifies to Windows what kind of window we’d like to use to run our application. We then will call CreateWindowEx which will give us the type of window we specified in our RegisterClass call. After these calls, we will have what’s necessary to start DirectX and our wrapper.

C. DirectX/Wrapper Setup

After Windows has been setup, we are now in possession of a valid HINSTANCE, and HWND that are necessary for our DirectX components. To setup our wrapper we simply call game::SetupGame with our HWND and HINSTANCE. game::SetupGame in turn calls the init function of every sub-wrapper we have. These include:

- game::display.init
(DirectDraw wrapper)

- game::sound.init
(DirectSound wrapper)

- game::input.init
(DirectInput wrapper)

- game::time.init
(Win32 timer wrapper)

Now that our wrapper is setup, we have access to all the functionality that our modules need to operate. The game’s main function pointer is pointed to the menu because we want to start out there. We will pass control to our game’s main loop.

D. Main Loop

Our game’s main loop only does what’s necessary for our program to continue to run. Everything else will be handled by calling the function pointer, which calls one of our three main modules. Our three modules include: game, lobby, and menu. Each of these have 3 modes: setup, run, clean. All of these are encapsulated in the Flow namespace. This will be the main loop:

while (1)

{

if (PeekMessage(&msg, NULL, 0, 0, PM_REMOVE))

{

if (msg.message == WM_QUIT)

break;

TranslateMessage(&msg);

DispatchMessage(&msg);

}

game::time.UpdateTime();

if (false == Close_Application)

{

game::input.Refresh();

game::control();

}

}

The ordering of our main loop is important, because the game::control function pointer does not get called until the time is updated, and the input has been refreshed. This prevents multiple instances of the same code in the project. Our main loop is an infinite loop, and the only way it can be broken is a call to game::ShutdownGame from a module that is given control from game::control. The code displayed above can be translated into this:

1. PeekMessage Loop – Allows windows to handle any messages it needs to.

2. UpdateTime – Updates the Win32 timer.

3. Close-Application Conditional – Prevents calling any DirectX specific calls if the while loop is on its last iteration.

4. input.Refresh – Queries the keyboard and mouse via DirectInput.

5. control – Whatever module (Game, Menu, Lobby) is in control (Function pointer) is called in whatever state (Setup, Run, Clean) they are set to.

E. Shutdown

Any of the Flow Modules (Game, Lobby, Menu) can call game::ShutdownGame which releases all of the game’s memory and allows the main loop to exit. Since all of our calls to release dynamic memory are guaranteed to be safe, ShutdownGame attempts to call all of our release calls to attempt the cleanest exit possible. Here is the C++ code of game::ShutdownGame.

int game::ShutdownGame()

{

Flow::Clean::Menu_();

Flow::Clean::Lobby_();

Flow::Clean::Game_();

game::display.Release();

game::sound.Release();

game::input.Release();

Close_Application = true;

return 0;

}

The calls to Flow::Clean attempt to release all of our game’s resources such as bitmaps and gamedata stored in linked lists. game::display.Release shuts DirectDraw down. game::sound.Release shuts DirectSound down. game::input.Release shuts DirectInput down. Close_Application is a Boolean that if true, does not allow any DirectX or module code to be processed within the main loop. This is important because if a module calls game::ShutdownGame it will take a few iteration’s of our game’s main loop before Windows will be ready to shut down our game. If this condition were not there, we may try accessing null memory from DirectDraw, DirectInput, or any other module.

V. Game Data

A. Game Mechanics

Keeping with Black and Tan’s framework philosophy, all of our data will be encapsulated into separate structures whenever possible. All of our wrapper’s will take pointers to wrapper structures, which allows each object whether it be sound or graphics can be treated as an object rather then a collection of variables. As a naming convention, all structs in our code represent an object that has a list of variables representing it, while a class can represent a broader object that also has methods that can manipulate itself.

B. Objects

Below is a list of our primary game structures. For easier reading, all methods and public/protected/private tags have been omitted. Some structures mentioned in the game namespace have not been finalized, so their declaration is not included. As our game matures we will add and modify our structures so that they better fit our needs.

namespace game
{

int

(*control)();
// Function Pointer that pts to what 'loop' is in control

Display

display;

// Display Module

Input

input;

// Input Module

Time

time;

// Time Module

Menu

menu;

// Menu Module

Gamedata
gamedata;
// In-Game Data Object

Network

network;

// Networking Module

Lobby

lobby;

// Lobby Module

Setup

setup;

// Startup Code

Sound

sound;

// Sound Module

Hud

hud;

// Heads Up Display Module

int SetupGame(HWND hwnd, HINSTANCE hinstance);

int ShutdownGame();

}

namespace Flow
{

namespace Setup

{

int Game_();

int Lobby_();

int Menu_();

}

namespace Clean

{

int Game_();

int Lobby_();

int Menu_();

}

namespace Run

{

int Game_();

int Lobby_();

int Menu_();

}

}

struct V2int
{

int x;

int y;

};

struct V2float
{

float x;

float y;

};

class Time
{

float timediff;

// time between previous and current frame

bool hi_res_timer_available;
// does the hardware support hi-res timing?

LARGE_INTEGER hi_timefreq, hi_timecurrent, hi_timeprevious;
// hi-res timer

DWORD

 lo_timecurrent, lo_timeprevious;
// low-res timer
// Methods Omitted

};

class Input
{

LPDIRECTINPUT7

pDI;
 // (private) the direct input interface

LPDIRECTINPUTDEVICE7
pDIkb;
 // (private) the keyboard interface

unsigned char

KBbuf[256];
 // the states of the keys on the keyboard

unsigned char

KBbufold[256];
// the previous state of the keyboard

// Methods Omitted

};

struct Data_Menu
{

float time;

};

struct Data_Lobby
{

float time;

};

enum PlayerClass
{

DUNEBUGGY = 0,

HUM,

TANK,

PLAYERCLASS_RESERVED1,

PLAYERCLASS_RESERVED2
};

enum WeaponType
{

MACHINE_GUN = 0,

HOMING_MISSILE,

TANK_CANNON,

WEAPONTYPE_RESERVED1,

WEAPONTYPE_RESERVED2
};

class Obj

{

V2float

// Object's coordinates

V2float

// Object's velocity

V2float

// Object's acceleration

float

// Object's angle

int

// Object's network ID

bool

// true if alive, false if dead

DDimage
// Pointer to drawing information

float

// How long its been in the death animation state

bool

// tan = true, black = false

int

// 0 if dead, positive otherwise

float

// how long it takes before another shot can be fired

float

// how long has it been since it's last fired a shot

bool

// true if object has the flag, false if not

int

// Player’s score

int

// Amount of oil

PlayerClass
// Object's class data

WeaponType
// Object's weapon data
// Methods Omitted

};

class Gamedata
{

public:

float

time_elapsed;

// in_game timer

V2int

shiploc;

// Player Vehicles’ location

Data_Menu
menu_elapsed_time;

// (float)

Data_Lobby
lobby_elapsed_time;

// (float)

Obj

obj[17];

// Vehicles

};

struct DDimage
{

LPDIRECTDRAWSURFACE7
surface;

// Surface Bits

char

*filepath;
// Location of file

int

width;

// Image Width

int

height;

// Image Height
};

struct Gamebitmaps
{

DDimage

background;
// background

DDimage

playership;
// player's ship
};

struct Lobbybitmaps
{

DDimage

lobby;

// Misc. Lobby Screen
};

struct Menubitmaps
{

DDimage

startscreen;
// Menu Screen at start of game
};

struct Bitmaps
{

Gamebitmaps

in_game;

Lobbybitmaps

in_lobby;

Menubitmaps

in_menu;
};
class Display
{

LPDIRECTDRAW7

pDD;

// Direct Draw 7 Interface

LPDIRECTDRAWSURFACE7
screen,

// Screen Surface

backbuffer;

// Backbuffer Surface

RECT

screenrect;

// the display rect
HWND

hwnd;

// Application Window

HINSTANCE

hInstance;

// Application Instance

V2int

res;

// Game Resolution

Bitmaps

bitmaps;

// Game Bitmaps

// Methods Omitted

};

C. Data Flow

All of the data within Black and Tan can be retrieved via accessor functions. To make sure other modules do not trash the data, the only way to manipulate data is by calling functions within our main game classes that do so. Modules are allowed to manipulate data in other classes, only if the class provides that functionality. For instance, the HUD class is able to manipulate the screen in the Display class. This law allows the game data to be uncluttered, and prevents multiple instances of the same code in different modules of the game.

Black and Tan relies heavily on the use of function pointers. By using function pointers, each function can operate under a set of previous assumptions because it will only be called if some function sets a pointer to it. This allows our code to have a significant less amount of conditionals that other programming methods would have us leave. Every frame, our main loop is called. We are guaranteed that the input buffer has been refreshed, and that the Win32 timer has been updated. After that our main function pointer called control is called. Control always points to a module (Game, Menu, or Lobby), and a state (Setup, Run, Clean) in the Flow namespace. Within each of these module states, sub-function pointers can be called which allows the modularization of different events such as input.

Here is an example of a module state changing control over to another module state.

if (input.KBbuf[DIK_2]&0x80)

// go to lobby module

{

Flow::Clean::Menu_();

Flow::Setup::Lobby_();

game::control = Flow::Run::Lobby_;

return 0;

}

The process is very simple. First a module calls its Clean state which takes care of freeing memory. It then calls the Setup state of the module it would like to pass control to. The control function pointer is then set to the Run state of the module that is about to receive control. Finally, the state is exited by a return statement, so that during the next iteration of the main game loop, the object it passed control to will be called via the main function pointer.

D. File Formats

a. Sound

The sound file format will be used to check if all of the sound resources comply with it. If any of these rules are not adhered to, the sound will not be loaded or played.

· The file must have either a .txt or a .sff extension.

· Only one ‘wav’ file name can be specified per line. There must not be any other characters including comments on this line.

· A line can be completely blank. The parser will ignore that line.

· A comment may be specified by placing a ‘#’ as the first character in a line.

The following is an example of a valid .sff file.

--

#Sample file.

#Created on 1-1-02 by Nate Cleveland for the bullet object.

boom.wav

ingame/pop.wav

#random comment of no importance

--

b. Map

The map file format will be used to check the map contains both object and tile data. Its structure ensures failsafes, so that if a file is corrupted or incomplete, the chance of the load failing (what we want) is higher. These failsafes cause redundancy and a larger file size, but it is a worthy sacrifice for error handling.

Begin File:

· 4 Bytes - An Identifier, i.e. MAP_

· 4 Bytes - the first 4 Characters of the Map file (file names will be 4 letters.bmp)

· 4 Bytes - Location of the File Location Marker for Tile indices

· 4 Bytes - Location of the File Location Marker for the Objects

· 4 Bytes - Width (in Tiles) of the Map.

· 4 Bytes - Height of the Map.

· 4 Bytes
- Number of Objects total in the File

· 4 Bytes - Id signifying the begin of the Tile indices

Begin the Tile Indices - each 1 or 2 Bytes

· 4 Bytes - Id signifying the beginning of the Object Section

· 1 or 2 Bytes - ID of the Object

· 8 Bytes - Location of the Object

· 4 Bytes - Offset to the Tile indices in the map file

· 4 Bytes - Offset to the Objects in the Map

VI. Artificial Intelligence (Updated 2/4/02)

A. Introduction

AI in Black and Tan is based upon the principles of polymorphism, inheritance, and states. Since both players and bots share many properties they each inherit those generalities. Polymorphism is used so that each derived child from the base player/bot class can be dealt with in the same way. Lastly, the meat of the AI in Black and Tan will be in the bots' states.

B. Implementation

Each player and bot publicly derives itself from class Agent. The Agent object has the skeleton for everything its children need. This includes functionality for getting cargo, moving, firing weapons, and physics collisions. Bellow is the class in question.

class Agent

{

protected:

int16
health;

//current health of this agent

int16
maxHealth;

//maximum health that this agent can be.

TEAM
Team;

//this agent's team, either black or tan

VEHICLE_TYPE vehicleType;//The type of vehicle that this agent is.

Phys_Vehicle phyData;
//The physics data for this vehicle. must be inited

public:

//all agent's call us update to update themself.

virtual bool update(void)=0;

//default ctor does nothing, but the dtor must be virtual just in case

//a derived class needs to do something special

Agent(){return;}

virtual ~Agent(){return;}

//they all use these two funcs to update themself.

virtual int init(TEAM newTeam, VEHICLE_TYPE newVehicle, POINT spawnPoint, void *pAiOnly = NULL){return 0;}

virtual int release(){return 0;}

//this can be plus or minus depending on a health boost or damage.

//we leave this virtual for the sake of the bots.

virtual int modifyHealth(int8 lifePoints){return 0;}

//We're completely willing to share the or physics data to anybody that asks for it.

//that way they can alter or data without us. This is a good thing.

TEAM GetTeam(){return Team;}

Phys_Vehicle *GetPhyDataPntr(){return &phyData;}

};//end class agent

As you can tell the Agent class is a pure virtual class and may itself not be insatiated. It is intended to be derived and used polymorphically as we shall see. There are two objects that derive themself from the agent class. The first is the player class. The player class gets input from the player and either deals with it or passes it onto the server. Below is a skeleton of the player class.

class Player: public Agent

{

public:

//all agent's call us update to update themself.

bool update(void)

{

//... do some stuff like get input.

return true;

}//end update

Player(){}

~Player(){}

//this is called when we spawn a new vehicle

int init(TEAM newTeam, VEHICLE_TYPE newVehicle, POINT spawnPoint, void *pAiOnly = NULL)

{

//set the vehicle and team.

return 1;//success

}//end init

int release()

{

//this is called if the player is killed.

return 1;//success

}

//this can be plus or minus depending on a health boost or damage.

int modifyHealth(int8 lifePoints)

{

//modify the health of the player, call release if they run out of hit points.

//return the new health value to the killer.

return 1;//success

}//end modifyHealth

};//end class player

Another class derived from the agent class is the BaseBot class. This, just like the Agent class, is a pure virtual class. It provides the groundwork for the state based AI of Black and Tan. The BaseBot class uses function pointers to switch between states. This may be more complicated then say a switch statement, but once a programmer looks over the structure of function pointers they are not at all complex. In the below class sample there is sample of how to initialize a function pointer, just look in the class constructor.

class BaseBot: public Agent

{

protected:

int32 maxDistFromPnt; //this is the maximum distance a bot will go from a point.

bool travelPath(void){return true;}

bool attack(void){return true;}

bool getCargo(void){return true;}

bool depositOil(void){return true;}

bool scurryToPath(void){return true;} /*This last one may not be used. I forsee a problem where players can hover at the edge of the path radius and get the bot to keep running towards them and away from them.*/

//function pointer for the above states.

bool (BaseBot::*currState)(void);

public:

/*makes sure were still alive, makes sure we're in the proper state,

hands off to our current state*/

bool update(void)

{

//1. check to be sure we're alive. May not really be necessary.

if(health <= 0)

{

//... do some stuff like report our death to others...

//..maybe call release like so.

release();

}//end if

//2. make sure we're in the right state

//....

//3. hand off to the state that we're in.

(this->*currState)();

return true;

}//end update

BaseBot()

{

//set the default state....

currState = &BaseBot::travelPath;

//... do more stuff, perhaps set more defaults....

}

~BaseBot(){}

//just like a players, only now we also MUST pass a pathhead to the Bot

//otherwise it won't know where to go.

int init(TEAM newTeam, VEHICLE_TYPE newVehicle, POINT spawnPoint,
void *pPathHead)

{

//set the vehicle and team.

return 1;//success

}//end init

int release()

{

//this is called if the BaseBot is killed.

return 1;//success

}

//this can be plus or minus depending on a health boost or damage.

int modifyHealth(int8 lifePoints)

{

//modify the health of the BaseBot, call release if they run out of

//hit points.

//return the new health value to the killer.

health += lifePoints;

return health;

}//end modifyHealth

};//end class BaseBot

The BaseBot, and almost all of its children, use path points for path finding. The map editor lays down a path of points for bots to follow and groups them together. These are passed to the bots when they are initiated and give them a road to follow.

So, if you want to make a defensive bot, just give it a path of points that circles a base. It'll patrol that area and attack any enemies it sees. For an offensive bot lay a road that leads by both bases and you will have the offensive bot you need. It is a very simple solution that will save the development team much coding. Below are the data types for path nodes.

struct PathNode

{

POINT
point;

//a point that the bots aim for

int8
num;

//the number in the list that this one is.

PathNode *next;

PathNode *prev;

};

struct PathHead

{

bool isDeffensive;
//true if it is defensive, false for offensive.

PathNode *PathNodeList;
//pointer to the list of pathnodes in this list.

PathHead *next;

};

There are four different classes that derive from the BaseBot class; HumveeBot, BuggyBot, TankBot, and GuidedMissile. The first three are just implementations of the BasicBot that specializes itself for each of the different vehicles. They each need a list of PathNodes to function. The GuidedMissile however is different. It may have the groundwork for five states, but it only has uses one of them. It also has no use for the path nodes; it simply flies straight to an enemy and detonates.

C. Class Diagram.

To help clarify the structure of the AI objects, below is a class hierarchy diagram.

D. AI Data Flow

As shown above the AI data types for Black and Tan were designed with polymorphism in mind. By using this structure we may place bots on any client, not just the server. Although in the final game we will place all bots on the server it is convenient for testing to be able to place them anywhere. Below is sample code on how to create and use the AI data types.

void SampleThread(void)

{

//create all the bots/player for our tutorial

Agent *p1 = new Player;

Agent *b1 = new HumveeBot;

Agent *b2 = new BuggyBot;

POINT spawn1,spawn2,spawn3;

PathHead *pPathHead;

//init all of our agents

p1->init(BLACK,TANK, spawn1 ,NULL);

b1->init(TAN, HUMVEE, spawn2, pPathHead);

b2->init(BLACK,BUGGY,spawn3, pPathHead);

while(1)

{

//..do any background work we need to do like draw and such.

//..check for messages from other threads.

//have each of the agents update themself as they see fit.

p1->update();

b1->update();

b2->update();

}//end while loop

return;

}//end sampleThread Function

VII. Physics and Statistics

A. Physics Design and Philosophy

In an effort to maintain the playability and 'fun-ness' of Black and Tan, all physics will be based roughly on Earth physics (i.e. if we use Gravity, we will use the Earth's constant force instead of just making something up). The designers have never been to an Asteroid, and neither have the players, therefore, if our physics calculations never once take into account anything remotely indicative of driving a jeep on an asteroid, nobody will be the wiser. In addition, Black and Tan will gladly sacrifice accuracy and integrity for fast calculations that feel right.

B. Collisions

Black and Tan will feature two distinct types of collisions - those involving only cars and those involving a car and an immoveable object - rocks, or any other 'un-passable' tile.

Collisions involving only one vehicle and an immoveable object will be simple. For playability, we will see whether the vehicle is traveling in excess of some predefined values, and depending on the criteria met, will either simply stop the vehicle, or hit the impassable object, and actually begin rolling backwards, with some amount of recoil. In essence, if the player is traveling very fast in the dune buggy, and makes contact with a wall, it will hit the wall and bounce back a certain amount (retaining their current theta), whereas if the player is driving the dune buggy slowly, and hits a wall, they will simply stop upon contact.

When two vehicles collide, we will need to do more than stop or bounce them apart. Efficiency permitting, we will take a dot product to determine the angle of impact between the two vehicles, run through an elastic-collision model (will take the masses into account as well as velocity) to determine the resultant velocities and position, as well as possibly alter the direction (theta) that the two vehicles were heading.

C. Movement

Each different vehicle will have several differences that will dictate movement: both straight acceleration, and circular motion (turning). Momentum will not come into play though, we will use a straight drop off value to the player's current speed/velocity for braking (large value) and when the player is not pressing the accelerate button (smaller value).

There is a chance that we will use a quadratic polynomial to describe each different vehicle's acceleration, but there is an even greater chance that we will simply add a constant value to the current speed. While having a polynomial to describe the vehicle's speed would be wonderful, it is extra multiplication and addition, which may need to be cut. If a straight addition is made to the current speed, we can simply add values, and calculate the new position accordingly.

For turning calculations, we will use a constant of static friction to determine the actual turning radius: r = (v * v)/(Gravity * ConstantStaticFriction) to determine the new path, where Gravity and the Constant of Static Friction have been With the radius, one can quickly calculate the new position of the particle in the system.

For all position updates, we will need to make some cosine and sine calculations to determine the new position. Given the velocity and angle of the vehicle, we can determine where the new position will be on a two-dimensional grid:

x = Velocity * cos(theta) * time.GetTime() ;

y = Velocity * sin(theta) * time.GetTime() ;

It should be noted however, that instead of calling any pre-existing cosine or sine functions, we will either (a) make a lookup table of all the possible values; (b) use an abbreviated version of the Taylor expansions for each (carry out only the first 2 or 3 steps of either cosine or sine).

D. Physics Data Structures

Here is a hypothetical vehicle class, note that anything listed as an int may well be implemented as a float or double.

class Phys_Vehicle

 {

int velocity ; // magnitude of the player's vector

int maxV ;
// the maximum 'speed' the vehical can travel

int theta ;
// the player's current direction theta, in degrees

V2int position ; // current x, y location of the vehicle

public:

void collide() ;// collide with an impassable

void collide(vehicle *other) ;
// overloaded version, used when //colliding with another vehicle.

void accelerate() ; // gas is pressed

void brake () ; // brake button is pressed - reverses if not moving forward

void coast() ; // neither gas nor brake is pressed

void turn (int direction) ; // turns the vehicle - param may be enum type

}

VIII. Multiplayer

A. Client

Our client will be required to handle input from the player, drawing the world for the player, printing text chat of the players, and passing and receiving messages with the server.

Instead of barraging the server every frame with the player’s often-repetitive keyboard input (up arrow being held), the client will only sent a message to the server when his input has changed. Because of this, each client will have to predict where each player is, instead of receiving a stream of location updates that would cause even the fastest client’s to show jerky motion. Our prediction routine will be simple and will consist of the client performing the same physics routines that the server does. This will allow the client to simulate the server’s code without having to know all the details the server has. The client does not make the actual decision of saying who was shot by who, and did player X just ram into the wall, but it does simulate it so that the player can see the battlefield in real time and react. The client input will be sent as a simple packet saying what the player is now pressing, when any input has changed. This input is always granted, and not checked by the server because a player can move in any direction they please at any time (they can be running into a wall and not moving, and that would still be valid). Firing and changing ships are things that must be server-authenticated first. When a player attempts to do these actions, the server verifies if it is legal for the player to do so. If the server returns true, the client’s screen is updated with the request (a shot is shown on the screen, or the player switches vehicles).

B. Server

The Black and Tan server is the heart of how our game operates. All decisions in the game are made by it, and it is in charge of telling the client’s how the game is progressing. The server is made up of several modules including collision detection, physics, message handling, login module, and chat server. Each of these modules gather the information they need to make a decision, and then broadcast the result to all the clients. If game decisions were made on the client level, synchronization would be impossible, and every client would have a completely different dataset. By centralizing all the important game functions, we can prevent cheating, and get the most WYSWIG experience possible. The client will have similar functionality when it comes to updating data so that it can draw the screen, but the server is responsible for actually updating the data and making the decisions of who shot who, and who is dead.

C. Game Messages

The client will be responsible for receiving messages from the server that modify the game. There are two states for the server, Lobby and Game. In Game mode the client will be required to respond to commands that are score, spawn, synchronization, or system related. Each of these message “realms” will encapsulate several different messages that the server can pass at any time to the client. These include:

a. Score

i. Change player total score

ii. Change player current cargo amount

iii. Change team scores

b. Spawn

i. Request Spawn projectile

ii. Spawn projectile

iii. Unspawn projectile

iv. Request spawn vehicle

v. Spawn vehicle

vi. Unspawn vehicle

vii. Spawn cargo

viii. Unspawn cargo

ix. Spawn health

x. Unspawn health

c. System

i. Start game

ii. End game

iii. Chat global

iv. Chat team

v. Drop player

d. Synchronization

i. Update player locations

ii. Update score

iii. Update player list

iv. Update cargos

v. Update healths

D. Lobby Messages

The lobby will perform similarly to the game module, with different “realms” of messages. These realms include Chat, Settings, and System.

a. Chat

i. Chat team

ii. Chat global

b. Settings

i. Request setting change

ii. Setting change

c. System

i. Connect

ii. Disconnect

iii. Remove player

iv. Add player

v. Start game

vi. Receive stats

IX. User Interface

A. Control Overview

Black and Tan is a fast paced, multi-player team game. Therefore there are three main considerations when designing the game's control set. First, a player must have precise control of their vehicle. Second, a player must be able to communicate clearly with their teammates. Last, a player needs quick access to current game statistics so they may make informed strategic decisions.

The default control set has been designed to feel instantly familiar to gaming veterans, while being simple enough to allow new game players to jump right in. Also, the payer can create a custom control set from the Configuration Menu.

Even with an intuitive control set, it is essential that the game provide appropriate visual feedback to the player. Please see the Interface section of this document for details.

B. Control Scheme

a. Vehicle Control

Gas

W

Brake/Reverse

S

Left Turn

A

Right Turn

D

b. Combat

Aim Turret

Mouse Movement

Primary Fire

Mouse Button 1

Secondary Fire

Mouse Button 2

c. Communication
Global Chat

Y(Enter to send message)

Team Chat

U(Enter to send message)

d. Quick Messages

Rally at Base

1

Attack Enemy Base

2

Retreat

3

Rally at Me

4

Rally Right

5

Rally Left

6

Boast for the Black Team

7

Boast for the Tan Team

8

Taunt Black Team

9

Taunt Tan Team

0

e. Information

Cycle Multi-pad

Tab

Score Detail

F1

Cargo Detail

F2

Kill Detail

F3

Vehicle Select

F4

C. Text Output

A lot of information must be delivered to the user in a quick, efficient manner. In order to avoid slowdowns with standard GDI text functions, we will create a generic bitmap text blitter: BTextOut. BTextOut translates ASCII values of a character string into RECTs within a bitmap containing a custom, mono space font. To avoid several additions per character needed to calculate a RECT, a simple array of RECTs will be initialized at run-time. So all that will be needed to find the proper section to blt is a single index into the array.

BTextOut(string, rect, bClip);

The user passes a character string to be written, a rect that represents the location for the text to be drawn (starting in the upper left corner), and a flag telling BTextOut() wether to clip the text to the right edge of the rect or to wrap it to the line below when the edge is encountered.

Supported Characters

abcdefghjklmnopqrstuvwxyz

ABCDEFGHIJKMNOPQRSTUVWXYZ

1234567890()!?,.;@#$%^&*'"/\+=-_<>

D. Buttons

The ButtonList class is used by menu screens to maintain a list of buttons and checkboxes within a menu screen. Each screen will maintain it's own instance of a ButtonList and will need it's own handling of each button's state.

ButtonList.AddButton(id, rect, pOnImage, pOffImage, bToggle, bChecked);

Internally, ButtonList keeps a dynamic list of buttons in it's control and state information for each button. The ButtonList.AddButton() function is used to add a new button to the list. The user must pass a unique integer id (greater than 0), the screen rect containing the button, and pointers to Images for the on and off states of the button. If needed the user can also specify that the button is a toggle and it's initial toggled state.

Returns 1 if successful, 0 if the button id already exists, or -1 if it fails for any other reason.

ButtonList.RemButton(id);

If the user passes the id of a valid button it will be removed from the internal list. ButtonList's deconstructor will free all resources. Returns 1 if successful, or 0 for any other reason.

ButtonList.Update(pDInput);

Update() is called when the user wants to check if a button has been clicked since the last update. The results of the current direct input poll must be passed in so that ButtonList can check for mouse clicks within any button RECTs. If a button has been clicked it's toggled state will be updated. If a button was clicked, the button's id will be returned, otherwise 0 is returned.

ButtonList.State(id);

State will return the current toggled state of a button.

ButtonList.Draw();

Draw signals ButtonList to draw all of it's buttons (in their current state) to the back buffer.

E. Text Boxes

The TextBoxList class functions similarly to the ButtonList class. It maintains an internal list of text boxes and their contents, but the user must handle the results themselves. The class will not offer full text editing capabilities either.

The player must click on a box in order to make it an active text box. When a box is active, input is added to the buffer. Only the supported symbols will be input and the backspace key can be used to back delete a character at a time. If a buffer for a text box is filled, all input except the backspace key will be ignored.

TextBoxList.AddTextBox(id, rect, pOnImage, pOffImage, textRect, bClip, buffSize);

This adds a box to the internal list. User must specify a unique integer id (greater than 0), the box image's screen rect, pointers to the box's images, the screen rect for the text (and it's clipping options), and the size for the text buffer. Returns 1 if successful, 0 if the button id already exists, or -1 if it fails for any other reason.

TextBoxList.RemTextBox(id);

Removes the specified text box. Returns 1 if successful, or 0 for any other reason.

TextBoxList.Update(pDInput);

First, checks to see if any of the boxes in it's list have been clicked by the player. If a box has been clicked it will be set to the active box and all other boxes will be set to inactive. Next, it checks the input results too see if any characters need to be added to the active box's buffer.

TextBoxList.Activate(id);

The text box with the corresponding id will be made the active box.

TextBoxList.Deactivate();

The currently active text box will be deactivated.

TextBoxList.GetBuff(id);

Returns a pointer to the corresponding box's buffer or NULL if the id invalid.

TextBoxList.SetBuff(id, string);

Copies the contents of string to the corresponding box's buffer.

TextBoxList.Draw();

Draws all the text boxes to the back buffer.

F. Menu

The main menu system consists of three screens: the Title screen, the Join Server screen, and the Configuration screen. Each screen uses reusable interface elements to gather input from the payer. These will allow us to modify or add to a menu's functionality very easily once the menu is set up.

Each menu will be a sub-section of the Menu module. The Menu Module will be responsible for switching control between each sub-section and will execute common tasks (such as getting direct input) each frame. Only one menu screen can be active at a time, and each must report back to the main module with it's results.

Title Screen

The title screen displays a full screen title graphic and three buttons: Join Server, Configuration, and Quit. The Join Server button passes control to the Join Server Menu. Configuration passes control to the Configuration Menu. And Quit exits the game.

Join Server Screen

The Join Server Screen has a prompt for a server address and a text box to accept user input. If a valid IP address has been entered the user can click a Connect button. A Cancel button allows the user to return to the Title Screen.

Configuration Screen

The Configuration Screen has text boxes for each of the game's controls so a user can create their own control set. Three buttons at the bottom of the screen will allow the player to save their changes, revert to the last saved changes, or return to the Title Screen.

G. Lobby

The Lobby is the waiting area for a multi-player game where players set up options for the next round, join teams, and chat. When all players decide that they are ready the game will begin and the lobby hands control to the Game Module. The lobby communicates every change that occurs to the server, which in turn notifies all client lobbies of the current status.

The left and right sides of the screen (200x600 sized sections) contain lists of the members of the Black Team and Tan Team respectively. A button on each side will allow a player in the lobby to join or change teams.

The center of the lobby is divided into two more sections. The top portion (400x300) lists available maps and contains controls to edit round options. Our standard toggle buttons and text boxes will be used extensively here.

The lower portion of the center lobby is the chat window. The bottom of the chat window has a text box that the player can compose a message in. Pressing the enter key broadcasts the message to the lobby and clears the text box.

Messages appear in the chat window just above the text box and scroll upward as new messages are broadcast. Messages are discarded after they scroll off the top of the chat window.

H. HUD

The HUD needs to inform the player about their state, their team's state, and the game's state in a compact, easy to read manner. Because of this, the HUD in Black and Tan fills the entire left third of the game screen (200x600 pixels). The contents of the HUD will be drawn directly over a HUD backdrop on the back buffer and a large color keyed image will be blitted on top to perform masking of meter bars and the radar display.

The HUD has been broken into three sections: Radar, the Multi-Pad, and the Player Status. The radar fills the top third of the HUD as it is a 200x200 pixel square. The client maintains a list of object visible to the player and their teammates at all times. Each frame's icons are blitted to the radar screen according to their distance from the player.

The Multi-Pad has a horizontal bar graph representing the current cargo distribution on the map. Below this is a sections for text lists of players or game statistics. The player status section simply displays the player's health and inventory.

Radar

The radar displays everything within 900 pixels of the player. Each update the list of game objects must be checked against the player location and where appropriate the distance will be scaled to the radar size and a color dot will be blitted. (Colors for dots are specified within the GDD.)

Multi-Pad

The Multi-Pad displays various lists of information so it relies on the BTextOut function heavily. Each Pad has a totally different set of data it needs to list so specialized functions will have to be written for each state of the Multi-Pad. Essentially each pad will have a list of player names on the left and a corresponding list of values (such as cargo captured, or enemies killed) on the right.

Meter Bars

Several locations on the HUD have vertical meters that report the level of some value (i.e., the player's health). A bitmap representing a full bar will be blitted where appropriate, that has been clipped to the scaled value it represents. So a player with 76% health will have a 76 pixel high health bar on a 100 pixel meter.

Score Bar

The score bar is similar to other meter bars. However, it is horizontal, and it represents five sets of data in stead of one for other meters. Each section on the score bar will have it's own bitmap representing a full bar of that section. Cargo values will be scaled to the size of the score bar, and the clipped bitmaps will be blitted.

Ammo Counter

The ammo counter is another variation of the meter bars. It is broken into three sections, each representing a single missile. Drawing starts from the bottom up.

Aiming Vector

A solid line will point away from the center of the player's turret to clearly indicate the direction the turret is aiming. GDI will be used to draw this line from the player's width from the turret center for 100 pixels.

Chat

Text messages from other players will be displayed three deep at the bottom of the game window. The messages will scroll up out of the 'buffer' and be discarded after three messages have been displayed. Otherwise they are discarded after three seconds of visibility.

X. Art and Video

A. Introduction

Black and Tan is a 2D tile based game so all graphics come from pre drawn or pre rendered bitmaps. Following is a list of all the bitmaps each section of the game will require. For instructions on creating Black and Tan's art assets please consult the Artist Instructions section of this document.

B. Specifications

Font

Letter size

10x12

Full layout

260x48

Shared Menu Art

Title graphic backdrop
800x600

Cancel Button

50x20

Title Screen Specific

Join Server Button

100x20

Configuration Button

100x20

Quit Button

100x20

Join Server Screen Specific

Backdrop

400x300

Connect Button

50x20

IP Address text box

160x20

Configuration Screen Specific

Backdrop

400x300

Binding text box

60x20

Save Button

50x20

Revert Button

50x20

Lobby Art

Backdrop

800x600

Map Preview

200x100

Ready Button

50x20

Join Team Button

50x20

Checkbox Button

20x20

Text box

60x20

Note: All button and text box graphics are doubled because they have both an On and Off state.

Game Art

HUD

Backdrop

200x600

Overlay

200x600

Radar Icons

2x10

Score bars(x5)

180x30

Meter bar

20x50

Ammo bar

20x50

Vehicle icons(x6)

60x50

Vehicle chassis and turrets, and missiles have 32 frames - each representing a different heading. They are laid out in two columns of frames on a single bitmap. tile zero shows the vehicle heading at zero degrees. Each progressive tile shows the vehicle offset clockwise 11.25 degrees.

Buggy chassis

32x32
64x512

Buggy turret

16x16
32x256

Humvee chassis
40x40
80x640

Humvee turret

20x20
40x320

Tank chassis

48x48
96x768

Tank turret

24x24
48x384

Misses

16x16
32x256

Items and effects have 8 total frames.

Cargo

16x128

Health

16x128

Missile smoke

16x128

Smoke

32x256

Sparks

16x128

Explosions

40x320

Debris

16x128

The parallax star back drop that will be displayed beyond the asteroid consists of three layers. The furthest layer is a solid tiling star graphic. The other two are transparent bitmaps with a few stars on each.

Back

256x256

Layer 1

128x128

Layer 2

128x128

Map tiles are all 64x64 and are laid out four wide and 16 high on a single 256x1024 bitmap. Tile zero is in the upper left corner of the set and counting begins down and wraps to the right.

Tile 0

Transparent

Tile 1

Black Team depot.

Tile 2

Black Team repair.

Tile 3

Tan Team depot.

Tile 4

Tan Team repair.

Tile 5-16
Asteroid to space transitions.

Tile 17-28
Asteroid to crater transitions.

Tile 29-40
Asteroid to impassable transitions.

Tile 41-44
Crater floor variations.

Tile 45-48
Impassable terrain variations.

Tile 49-56
Impassable object variations.

Tile 57-64
Normal terrain variations.

XI. Graphics Engine

A. Introduction

Black and Tan’s graphics engine is a DirectDraw 7 wrapper class that allows us to construct a 2d top down image with n layers of parallax. Since there is no set drawing order or hard coded values, the engine can be used for both menuing and in-game code. Our engine supports the following features:

· 800x600x32 resolution

· Automatic surface clipping

· MMX Alpha Blending

· Color Key Transparency

· Software Rotation

Alpha blending and rotation are not enabled by default to allow maximum customization for the module that uses the engine. Because DirectDraw doesn’t support alpha blending or rotation, we will write our own routines that will not be able to take advantage of hardware acceleration. This extended feature set can be called via separate Draw functions within our wrapper, which allows the programmer to use special effects when the frame rate won’t be hurt significantly.

B. Layout

Our engine has already been written, and is nearly 100% functional. Here is how the engine is laid out.

int Init()

{

DDSURFACEDESC2 DDsd;

// Initiate Direct Draw

DirectDrawCreateEx(NULL, (void **)&pDD, IID_IDirectDraw7, NULL);

// Take over primary drawing surface

pDD->SetCooperativeLevel(hwnd, DDSCL_FULLSCREEN | DDSCL_EXCLUSIVE | DDSCL_ALLOWREBOOT);

pDD->SetDisplayMode(res.x, res.y,32,0,0);

SetRect(&screenrect, 0,0, res.x, res.y);

// Create the primary surface

memset(&DDsd, 0, sizeof(DDsd));

DDsd.dwSize = sizeof(DDsd);

DDsd.dwFlags = DDSD_CAPS | DDSD_BACKBUFFERCOUNT;

DDsd.ddsCaps.dwCaps = DDSCAPS_PRIMARYSURFACE | DDSCAPS_FLIP | DDSCAPS_COMPLEX;

DDsd.dwBackBufferCount= 1;

pDD->CreateSurface(&DDsd, &screen, NULL);

// attach a backbuffer to it

DDsd.ddsCaps.dwCaps = DDSCAPS_BACKBUFFER;

screen->GetAttachedSurface(&DDsd.ddsCaps, &backbuffer);

return 0;

}

int Release()

{

pDD->RestoreDisplayMode();

SAFE_RELEASE(backbuffer);

SAFE_RELEASE(screen);

SAFE_RELEASE(pDD);

return 0;

}

void DDSurfaceMaskSet(LPDIRECTDRAWSURFACE7 surface)

{

DDCOLORKEY DDcolorkey;

DDcolorkey.dwColorSpaceHighValue
= MASKCOLOR;

DDcolorkey.dwColorSpaceLowValue

= MASKCOLOR;

surface->SetColorKey(DDCKEY_SRCBLT, &DDcolorkey);

}

void DDimageCreate(DDimage *image, DWORD w, DWORD h)

{

DDSURFACEDESC2 DDsd;

HRESULT

hr;

// use that information to create a suitable surface

memset(&DDsd, 0, sizeof(DDsd));

DDsd.dwSize = sizeof(DDsd);

DDsd.dwFlags= DDSD_CAPS | DDSD_WIDTH | DDSD_HEIGHT;

DDsd.ddsCaps.dwCaps= DDSCAPS_OFFSCREENPLAIN;// | DDSCAPS_SYSTEMMEMORY;

DDsd.dwWidth= w;

DDsd.dwHeight= h;

image->width

= (unsigned int)DDsd.dwWidth;

image->height

= (unsigned int)DDsd.dwHeight;

// FREE ALLOCATED MEMORY FOR FILEPATH HERE

// Allocate a surface to store the image

hr = pDD->CreateSurface(&DDsd, &image->surface, NULL);

}

int Load(DDimage *image, const char* file)

// Load a bitmap

{

HBITMAP

 hBitMap;

HDC

 hDC, hdcBitMap;

DIBSECTION
 ds;

// load the filename, file is NULL then it is assumed that it has already been setup

if (file)

{

image->filepath = (char*)malloc(strlen(file)+1);

strcpy(image->filepath, file);

}

else

{

return -2;

}

// initialize the surface to NULL incase this fails early

image->surface= NULL;

// Load the bitmap

hBitMap= (HBITMAP)LoadImage(NULL, image->filepath, IMAGE_BITMAP, 0,0, LR_LOADFROMFILE | LR_CREATEDIBSECTION);

if (hBitMap==NULL)

{

return -1;

}

// obtain some information about it

GetObject(hBitMap, sizeof(ds), &ds);

// create the surface

DDimageCreate(image, ds.dsBmih.biWidth, ds.dsBmih.biHeight);

/* prepare the copy operation */

image->surface->GetDC(&hDC);

hdcBitMap= CreateCompatibleDC(hDC);

SelectObject(hdcBitMap, hBitMap);

// Paint the bitMap to the surface

BitBlt(hDC, 0, 0, image->width, image->height, hdcBitMap, 0, 0, SRCCOPY);

// we are finished, clean up after ourself

image->surface->ReleaseDC(hDC);

DeleteDC(hdcBitMap);

DeleteObject(hBitMap);

return 0;

}

int Draw(DDimage *image, int x, int y, DWORD trans)

// Draws an arbitary bitmap

{

RECT rect;

// clip it out of the window

if (x >= res.x || y >= res.y ||

x < -image->width || y < -image->height)

return 0;

if (x+image->width >= res.x) rect.right= res.x-x;

else rect.right= image->width;

if (y+image->height >= res.y) rect.bottom= res.y-y;

else rect.bottom= image->height;

if (x < 0) {

rect.left= -x;

x= 0;

} else rect.left= 0;

if (y < 0) {

rect.top= -y;

y= 0;

} else rect.top= 0;

backbuffer->BltFast(x, y, image->surface, &rect, trans | DDBLTFAST_WAIT);

return 0;

}

int DrawRot(DDimage *image, unsigned char angle)
// Draws a rotated image

{

return 0;

}

int DrawAlpha(DDimage *image, unsigned char angle)// Draws an alpha image

{

return 0;

}

int Free(DDimage *image)

// Frees a bitmap

{

SAFE_FREE(image->filepath);

SAFE_RELEASE(image->surface);

image->height = image->width = 0;

return 0;

}
XII. Artist Instructions

A. Overview

Format

All Art for Black and Tan must be standard, uncompressed 24bit color bitmaps. Where transparency is required within an image the RGB value 255 0 255 should be used. The exception, however, is with the bitmap font which should have the RGB value 0 0 0 as its color key.

3D Art

To ensure that the art in Black and Tan stands out a 3D Design package will be used to render object sprites and interface elements. Unfortunately, this requires post processing to ensure proper scale, layout, and object shadows.

Interface Graphics

Interface graphics will be rendered on a flat surface which has been textured with color, bump, and specular maps. Occasionally, simple 3D shapes may be added to the surface to enhance the look, but the idea is to keep the models extremely simple.

Bump and specular maps are simple gray scale images where black is low or non-reflective and white is high or reflective. As a rule, all interface textures should be created at twice the final resolution to ensure a quality render. Additionally all interface objects should be rendered within the same workspace with the same global lighting values.

Objects

Vehicle, weapons, and pickups will all be modeled in 3D. These models do not need to be highly detailed as the final object sizes are 48x48 at the largest and 16x16 at the smallest. Care should be taken with the textures to ensure that the final rendered sprites will show against the map tiles. Lighting should be consistent with all objects (as well as all map tiles). Turrets must rotate about the centers of their sprites - this is where they will be attached to the vehicle chassis.

Map Tiles

All map tiles are 64x64 in size. Each should be rendered with a color and a bump map. Keep in mind that light sources should be consistent with game objects.

Effect Sprites

With the exception of sparks and debris, effects are drawn with an 8 frame, non-looping animation. Both the sparks and debris bitmaps will be used by choosing a random tile from the set. Each frame of these should be different, but consistent with the set.

XIII. Sound and Music

A. Interface

The only interface outside objects have with the audio hardware is through the Sound class. The Sound class provides support for all needed sounds and on the surface gives little distinction between them. As far as callers of the Sound class are concerned there are only non-looped and looped sounds. This may seem an over simplification, but it works very well. Here is a list of all public functions inside the Sound class and how they work.

init

Prototype: int init(const char* fileName = NULL);

Init loads all needed sound support for DirectSound. Optionally you may pass file name to it and it will pre-load a list of waves. See S-3 for the only acceptable sound file format. Returns 1 on success and 0 for failure. Most common error is another instance of DirectSound.

release

Prototype: int release();

Release frees all dynamic memory and closes all interfaces with DirectSound used by the Sound class. Returns 1 on success, and 0 for failure.

loadSound

Prototype: bool loadSound(const char*fileName);

By passing the name of a file to loadSound a wave file can be preloaded for quicker play back. Returns true for success and false for failure. Common conditions for failure are; the file name passed was null, the file does not exist, the file is not a wave, or the file has an improper file format (very common with wave files from the Internet). The Sound class tries its best to recover from improper file formats but cannot guarantee support for all wave files.

loadList

Prototype bool loadList(const char* fileName);

Takes a .sff or .txt file that follows the sound file format outlined in S-3 and loads all the waves listed in it. Returns true for success and false for failure. Common reasons for failure are the same as for load sound with improper SFF being another problem. LoadList will continue to load files until an error occurs.

freeList

Prototype: bool freeList(const char* fileName);

Frees an entire list of sounds. The file passed to freeList must follow the SFF. Returns true for success and false for failure. Only possible failure is the file pass is not in the proper format. Will not return failure if any sounds aren’t freed.

freeSound

Prototype: bool freeSound(const char* fileName);

Frees a single sound. Will only return failure if the sound does not exist.

freeAllSounds

Prototype: bool freeAllSounds();

Just as its name implies, once called this function will free all sounds that have been loaded. Can never return failure. This function is also called automatically by release.

playSound

Prototype: bool playSound(const char* soundToPlay);

This is the function needed to play a non-looped sound. All that is need for the sound to play is the file name of the sound. Sounds should be preloaded before being played, but a sound will automatically load the sound for the caller. However, this is slow and should be done at load time rather then run time. Only returns failure if it’s internal call to loadSound fails. See loadSound for its possible failures.

loopSound

Prototype: bool loopSound(const char* soundToPlay);

Same as playSound, only the playback will be looped continuously.

update

Prototype: bool update();

This function must be called at least once every frame. It cycles through and updates all the DirectSound Buffers. Play back will become completely erratic if update is not called. At this time can never return failure.

stopSound

Prototype: bool stopSound(const char* fileName);

Instantly removes all instances of the sound whose file name is passed to it. Can never return failure, even if the filename passed to it does not exist.

endLoopSound

Prototype: bool endLoopSound(const char* fileName);

Will stop a sound from continuously looping. Sound playback will continues until the sound has completed. Can never return failure, even if the filename passed does not exist or the sound is not looped.

B. External Use

All objects that wish to play a sound will simply call playSound and pass the address of the filename within the sound structure they wish to play. File names are assumed to be no more then 64 characters. All of our wav files will be file mapped, because parsing a wave can be slow and should not be done at run time.

The sound class will be treated as a singleton, and will only be allowed to initialize at startup. Since DirectSound allows for Priority control, if any other program has requested the highest level of control, sound will not play. The Sound class may also take advantage of priority (highest) control if it deems it necessary.

C. Implementation

Besides the public functions listed in the first section of this chapter, the Sound class also maintains two Doubly linked lists.

SoundData class

The first of the doubly linked lists held by the sound class is a list of SoundData classes. A SoundData class has all the data needed for a sound to be later initiated. Whenever a sound is loaded behind the scenes an instance of the SoundData class is created. The class then loads the file and parses it. It also links itself to the list maintained by the Sound class.

Because of the structure of the SoundData class each loaded sound will only take up at most two seconds worth of data. The rest, which is mapped by windows, is swapped in and out of the sound buffers. Below is the SoundData prototype, as well as the LoadWav and DblLink classes which it inherits.

//The double linked class. Intended to be used for inheritance only.

class DblLink{

protected:

DblLink *next;

DblLink *prev;

//automatically returns the next in the linked list.

template<class LinkedClass> LinkedClass *GetNext(LinkedClass *pCurr);

//returns the last in the linked list.

template<class LinkedClass> LinkedClass *GetPrev(LinkedClass *pCurr);

//adds a node to a doubly linked list. Besides being passed the node in question it also //must get the first in the linked list and the last.

//These must be double pntrs.

template<class LinkedClass> bool addToDblList(LinkedClass *pNew, LinkedClass **ppFirst, LinkedClass **ppLast);

//Frees a dbly linked list. must pass the last in the list.

//the caller must be sure not to use these nodes any more since delete will be called on //them.

template<class LinkedClass> bool freeDblList(LinkedClass *pLastInList);

//removes a single node from the list. it returns that node to the caller. Returns null when //it cannot find the node.

template<class LinkedClass>LinkedClass *removeFromDblList(LinkedClass *pRemove, LinkedClass **ppFirst, LinkedClass **ppLast);

};//end DblLink class

//holds everything you need to load and map a wave

class LoadWav{

protected:

char wavName[FILENAME_MAX_LEN];
//this is the file name of the wave and is used //to identify it.

HANDLE hFile;
//handle to the opened wave file. (winApi handle of //course, use CreateFile to open).

HANDLE hMap;

//handle to the wave's mapped

unsigned char *pFileView;
//pntr to the wav after it has been mapped.

WAVEFORMATEX *pWaveFormatEx;
//pntr to the wave format struct. holds tons //of relevant data about the wav file

unsigned char *pSoundData;
//pntr to the actual sound data

unsigned int soundDataSize;
//size of the sound data, in bytes.

unsigned long numSeconds;
//number of seconds in this wav

//This function uses windows file mapping to map a file. For those unfamiliar with file //mapping this process loads a file and

//tells windows to make the file's location on the hard drive the actual swap files for it in //memory. This is extremely fast and covenant,

//but, it does make this function fully windows dependant.

bool mapFile(const char *fileToMap);

//parses a wave file. Does its best to overcome improper file formats but it may still fail //on some non-standard wave files.

bool parseWav(unsigned char *pFileData);

//LoadWav ctor. must be passed file name so that it may load the file. The filename is //assumed to be .wav at this point.

LoadWav(const char* fileName)

{

//1. first copy the passed value into the wavName member

strcpy(wavName, fileName);

//2. next, open, map, and view the wav file

mapFile(wavName);

//3. next parse the wav file.

parseWav(pFileView);

//4. fill in the number of seconds

numSeconds = soundDataSize / pWaveFormatEx->nAvgBytesPerSec;

return;

}//end ctor

//sound class dtor.

~LoadWav()

{

UnmapViewOfFile(pFileView);
//unview the file

CloseHandle(hMap);

//close the mapping

CloseHandle(hFile);

//close the file itself now.

}//end dtor

};//end loadWav class

//holds all the data needed for a single sound.

class SoundData: public LoadWav, public DblLink

{

protected:

bool fPreload;
//if this is true then we need to advance the second //center upon creation by

//most likely 2 seconds.

DWORD bufferSize;

//size of the buffer in bytes.

IDirectSoundBuffer *pDSBuffer;
//pntr to this sound's buffer

public:

//creates a Direct Sound Buffer. If fPreload is set to true then the first two seconds of the //sound are preloaded.

bool createDSBuffer(IDirectSound *pDS, bool fPreloadBuffer, unsigned long numSeconds = 2)

{

DSBUFFERDESC dsbd;
//var used to tell DS how we want to create //the DS buffer

//1.1 set the buffer size and the format of the buffer, no flags are needed but //static may be used for small sounds.

//2.0 Create the ds buffer, catch errors

pDS->CreateSoundBuffer(&dsbd, &pDSBuffer, 0);

//if the preload buffer var is set to true then go ahead and pre load the buffer. //with numSeconds worth of sound.

if(fPreloadBuffer)

{

//Lock the buffer and load the first numSeconds worth of sound.

if(FAILED(pDSBuffer->Lock(/*...*/)))

return false;

// Copy the contents over with memove

//unlock the buffer

if(FAILED(pDSBuffer->Unlock(/*...*/)))

return false;

}//end if

//before we return out get the buffer and half buffer size.

bufferSize = dsbd.dwBufferBytes;

return true;

}//end create DSBuffer

//the ctor must be passed a pointer to a DirectSound interface to create a sound.

SoundData(const char* fileName, IDirectSound *pDS, SoundData **ppFirst, SoundData **ppLast)

: LoadWav(fileName), pDSBuffer(NULL)

{

//1. create this sounds ds buffer

if(!createDSBuffer(pDS, true))

return;

//2. next link the list for them.

if(!addToDblList(this, ppFirst, ppLast))

return;

}//end ctor

~SoundData()

{

pDSBuffer->Release();

}//end dtor.

};//end SoundData class

ActiveSound

The second Doubly linked list kept by the Sound class is a list of ActiveSound classes. These classes hold all the data to actually play a sound. These are the sounds that update loops threw and does its "updating" on. Or rather it asks them to do it themself. Active sounds use a cloned version of the DirectSound buffer created by the SoundData class. This makes it possible for a sound to played many times rather then just once. Each ActiveSound is linked to the SoundData that it is spawned from.

class ActiveSound: public DblLink

{

protected:

IDirectSoundBuffer *pClonedBuffer;
//pntr to the a clone of the original DS //buffer. this is the buffer that'll actually be //played.

unsigned int currSecond;
//holds the number of the next second to put //in. so when this is maxed no more to //stream into the buffer.

SoundData *pType;
//this will pnt to the class that holds all the //data on this sound.

//tells us what part of the wav is currently playing.

enum bufferIndicater{FIRST_HALF, SECOND_HALF} placeInBuffer;

//member function that streams the sound so we only need to use a 2 second buffer.

bool streamSound();

public:

ActiveSound(SoundData *pSDToLinkTo, IDirectSound *pDS, ActiveSound **ppFirst, ActiveSound **ppLast)

{

//1. first duplicate the buffer

ipDS->DuplicateSoundBuffer(pSDToLinkTo->pDSBuffer, &pClonedBuffer);

//2. next see how much data was loaded into the buffer

if(pSDToLinkTo->fPreload)

{

//if the sound is really short, ie less then defualt_buffer_seconds, then //the whole thing would've been loaded

//we'll need to use that as how much was in the sound.

if(pSDToLinkTo->GetNumSeconds() < DEFAULT_BUFFER_SECONDS)

currSecond = pSDToLinkTo->GetNumSeconds();

//if we get here that means that there is defualt_buff_secs in the buffer, //use that as the initial currSecond

else

currSecond = DEFAULT_BUFFER_SECONDS;

}//end if

else

//fill the first two seconds of the buffer

//3. next we need to add this to the linked list of Active Sounds and connect its pType

addToDblList(this, ppFirst, ppLast);

pType = pSDToLinkTo;

//4. play the buffer. all buffers are looped for the streaming process.

ipClonedBuffer->Play(0,0,DSBPLAY_LOOPING);

return;

}

~ActiveSound()

{

pClonedBuffer->Release();

}//end dtor

};//end ActiveSound class

The function streamSound is the most critical part of the ActiveSound class. It monitors where playback currently is and when a second of sound is done playing the one after next is swaped in its place. This sounds very confusing so here is an example:

Second #1 finishes playing so second #3 is copied in its place while #2 is still playing.

 Then after #2 is done playing the buffer automatically loops over and begins to play #3 while #4 if copied to where #2 was.

This may seem convoluted and confusing but it really is a very simple way to keep DirectSound Buffers small. More information on this technique can be found in the CS180 class notes written by Matt Grove. A copy can be provided upon request.

D. Class Diagram

XIV. Multithreading

A. Introduction

Black and Tan will use Multithreading techniques to streamline some objects. Multithreading allows one program to behave like many programs and do multiple things seemingly at the same time. When you declare a thread from the main program, another process is created on the system. This "thread" can share memory with the main program and any other sister threads. It can do computational expensive functions and algorithms without slowing down the game play.

It is very simple to declare a thread, just call the function _beginthread. The thread that you declare must have this function prototype of:

void __cdecl ThreadName(void *pParam);

Below is a sample creation of a thread done within the WM_CREATE message. Note, this is how all Client threads will be created in Black and Tan.

case WM_CREATE:

{

_beginthread(ThreadName, 0, NULL);

break;

}
Here is one of the main threads that will be in Black and Tan, the SoundThread, it is perfect example of a thread.

void __cdecl SoundThread(void *pSoundClass)

{

Sound *pS = (Sound*)pSoundClass; //convert the data so we can read it in context

//init the sound struct and anything else we need.

pS->init();

//...

//...

//...

while(1)

{

//get messages

//.....

//update all the data.

pS->update();

}

}
B. Technical

After creating a thread it may share data with any of the other threads. The other threads in turn must share their data with it. Any thread without restriction may access global variables. To keep debugging as simple as possible threads in Black and Tan do not access each other's data directly. Instead, threads pass messages to each other, telling each other what they need done rather then doing it directly.

Black and Tan uses standard win32 message passing for its inter-thread communication. This may not be the fastest way to communicate, but it is very simple and easy to use. To receive messages all threads need to do is call CreateWindow. Below is code that when put into the SoundThread lets it receive messages.

//Create a window, note the show window is not called; we don't want the user to ever see a window with this thread.

g_soundHwnd = CreateWindow(MYWNDCLASS,WINDOWTITLE,WS_OVERLAPPEDWINDOW,CW_USEDEFAULT,CW_USEDEFAULT,CW_USEDEFAULT,CW_USEDEFAULT,NULL,NULL,hInstance,NULL);
After this call all thread needs to do is send a message to the SoundThread is to call PostMessage or SendMessage with g_soundHwnd as the first parameter. To receive messages SoundThread will also need to have its own WndProc.

C. Command Flow

All threads, excluding the main thread, will be created in the WinMain create message. The main thread will also be responsible with killing the other threads, which is done by posting a WM_CLOSE message to the dying thread. Inside the WM_CLOSE handle of the thread's winproc will be a call to _endthread(). Below is the command flow for threads in Black and Tan.

D. Dangers

It is already difficult to debug a DirectX application; by adding multithreading it makes it even harder. A great danger in multithreading is data trashing. If one thread alters some data that another needs it may be very difficult to track down the problem. On top of that, none of the Team Black and Tan programmers has experience with multithreading. This lack of experience will make things even more difficult as we tread new ground.

XV. Development Tools: Map Editor

A. Introduction

The Black and Tan Level Editor is a slightly modified version of the Love Thy Neighbor Level Editor (written Fall of 2001). The Black and Tan Level Editor will run on any Windows machine, with certain, loose requirements. Featuring a simple, menu driven with hot-keys interface, an experienced user can piece together a map in minutes.

The only required updates to the older Level Editor is to actually remove code - any and all mentions of multiple tile layers or enemies will get the axe. Aside from removals, the only addition is to alter the save and load functions to fit within, to create the new .map files that will be in place for Black and Tan.

The Level Editor works by requesting the desired size of the map file, and then allows the user to load the tile set that they would like to begin 'painting' with. From there, the tiles available in the bitmap will be displayed in the right hand side of the Level Editor, and the user can click on one of them to begin painting with the selected tile. There is another child window where the user can enter in the 'ID' of an object. After doing so, one can click and place that object onto the map. One must be careful though - entering in an 'invalid' object (i.e. the Game Engine doesn't recognize the type) onto a map will have undesired effects ONLY when playing the game with the new level (crash!!).

Internally, the Level Editor is a mess. Written in C, it is a complicated beast, with a myriad of design issues (some ugly pointer issues, global variables, etc). To its credit though, the Level Editor can handle the tile layout process and object placement swimmingly; thus we will not need to create a new Level Editor from scratch. Although, if it is ever decided that the Level Editor should be available to the public, one would need to address the deficiencies.

B. Mechanics

The Black and Tan level editor will utilize the powerful Windows architecture by implementing a tactful menu system, several child windows for ease of use, and gather the built in power of the windows message passing system. The child windows will be used to display several items: the currently loaded tile set; object id's; and the currently selected item, be it tile, or object. The user of the Black and Tan level editor will immediately recognize the layout, and can begin to efficiently use the toolkit within a matter of minutes by simply drawing on knowledge accumulated through years of Windows computing.

C. Screenshot

[image: image1.png]

D. Platform and Requirements

The Black and Tan level editor is intended for use on a Windows 9.x or NT (2k) platform. The Level Editor will run on any Windows machine with a clock speed greater than a Pentium Pro 166 mHz, with 32 MB of ram.

E. External Code

The Level Editor is programmed explicitly for a Windows platform. It will utilize the standard Win32 libraries, including GDI to display images on the screen. Win32's robust library is utilized to handle all of the messages passing between child windows. A tactful menu has been created to allow intuitive navigation of the BLACK AND TAN Level Editor to native Windows users.

F. Control Loop

· User opens a map -> Gets the file name -> passes to the load function -> passes map struct to the functions that draw the screen.

· User opens a tile set-> Gets the file name -> tiles are loaded -> tile are verified 64 x nTiles*64 pixels -> tiles are parsed and displayed in the child window.

· User clicks on a tile-> Tile becomes 'selected brush' -> Internally, the tile index is stored.

· User Clicks on Map 'Grid'(with a 'brush' selected) -> We collect the windows coordinates from the windows message -> Selected Tile is painted at the tile 'slot' corresponding to those coordinates -> coordinates are also translated to our coordinates (x = x, y += Map Height <64 * MapHeight in Tiles>) -> tile index is stored in the map struct linked list for that location (Similarly for the placement of objects and enemies, but easier - we don't have to determine the appropriate tile - just save the coordinates).

· User deletes object -> run a search through the appropriate linked list to find the object at the proper coordinates -> preceding node is modified, the node is then removed.

· User selects 'Flood Map' -> All map tiles become the selected one.

· User saves the map -> Checks to see if map has already been saved - if has simply overwrites the file, if not -> Gets a file name to save as -> calls save function, which creates the .map file.

· User exits -> all dynamic memory cleared, gdi objects destroyed, and exit program.
G. Object Data

To maintain the data needed for our Items / Objects (ammo depot, health regeneration, spawn points), we use this struct. It keeps track of the id for the item (what it is - defined elsewhere), the x, y coordinates (translated from the windows coordinates to the Black and Tan coordinate system), and a link to the next item.

typedef struct _itemData
// items/objects

{

uint16
id;

//id of item or object

V2int

loc;

//Location of object

struct _itemData *next;
//next node in list

}itemData;
For the tiles, we use this system. We also keep track of where the tiles came from (storing the first 4 letters of the file name – all but the .bmp), and the height and width of the map layer in tiles. And we have a pointer to the tile indices, which will contain the offsets into the tile set for the actual tile.

typedef struct _tiles

{

uint8

tileId;
//tile set

uint16
tileHeight;
//height in tiles

uint16
tileWidth;
//width in tiles

uint8

*tileGrid;
//ptr to tile indecies

}tiles;
In the MapInfoHeader, we find the id for this map, and integer values for the number of enemies and objects. The last two values are used when saving/loading the file, they let the editor know exactly how much space the file is (saving) and conversely where the particular sections begin in the file (loading) for the enemies and objects.

typedef struct _mapInfoHeader

{

uint8

mapID;

//id of this map

uint16
numObjects;

//number of enemies and objects

uint16
numEnemies;

//number of enemies

}mapInfoHeader;
This is the main structure that our editor passes to and from most functions. It has a 'mapInfoHeader' (above), three 'tiles' structures, and two pointers - one to the first enemy structure, and one to the first object structure.

typedef struct _BTmap

{

mapInfoHeader header;
// header struct

tiles

tilez;
// the tiles struct

itemData
*objects;
// pointer to the object list

}BTmap;
This is the placeholder, used when saving and loading. Lets the editor know exactly where everything is.

typedef struct _filelocs

{

uint32

size;

uint32

ground;

uint32

object;

}filelocs;
H. Data Flow

General Messages:

WM_CREATE:

Upon startup, an BTmap structure is created, and initialized to known good values (0). This is what we transfer from function to function.

IDM_FILE_NEW:

The BTmap structure is initialized, and a dialog box is brought up that gathers the specific dimensions of the new map (non-modifiable later), These figures are then added into the appropriate tiles structure contained in the BTmap struct.

IDM_FILE_OPEN:

If a file is found with the name specified by the user, then the Editor passes the empty BTmap structure to the Load function. The Load function will parse through the saved .map file and fill in the appropriate sections with the saved data. This will cause the current .map file to be displayed, with all of the information ready to be altered again.

IDM_FILE_SAVE:

The Save function is passed the BTmap structure containing the data that the user has been adding to the map (see below). The Save function then writes the file based on the data contained in the BTmap structure.

IDM_LOADTILESET:

The user is prompted to find a bitmap containing tiles. After specifying and loading the image into memory (and it is discovered to be of appropriate dimensions - 64 x n*64), it is sent to the child window that will display it.

IDM_FLOOD_MAP:

With a Tile selected as the current BTbrush, then all tile indices for the current layer of the map will be changed to the current tile, by simply accessing the proper tiles structure in the BTmap structure.

ID_CLEARALLDATA:

After confirming that the user does indeed want to remove all current data and begin anew, the BTmap struct is re-initialized (set to good known values - 0), and the New map dialogue box is again displayed. The user will then have to respecify the map sizes (see IDM_FILE_NEW).

Other Noteworthy Messages:

WM_LBUTTONDOWN: (Tile Set Window)

With a tile set loaded, the user can select a tile by left-clicking on it in the child window, thus activating it as the 'BTBrush', and thus, can begin to 'paint' the map.

WM_LBUTTONDOWN:
(Grid Window)

(Tile Selected):

When the user then selects a tile in the 'Grid' window, the current tile index (and tile set id) will be added into the tiles structure for the appropriate level, at the specified location. At which point, it will be displayed on the screen.

(Object or Enemy selected):

The user will have to specify an id for the enemy or object, along with specific information for the enemy including the entry direction (from above, left, right, or beneath), and the enemy group id (when any enemy in a group is 'triggered', the entire group will attack). At this point, with enemy or object selected, when we get a mouse message from the grid window, a node will be added to the enemylist (or objectlist) contained in the BTmap structure, with the coordinates (group id & direction if enemy) will be added.

WM_RBUTTONDOWN: (Grid Window)

Right clicking is used to Remove an enemy or object. We will gather the coordinates of the instance, and then run a search through the object and enemy lists in the BTmap struct. If either an enemy or object is found with those coordinates (given a small tolerance), we ammend the linked list, and remove the specified node.

Functions Overview:

RemoveObject:

Sorts through the list searching for specific values. Returns a pointer to the item matching the criteria (coordinates), or NULL if it is not found.

AddObject:

This is used to add an object to the appropriate linked list, contained in the BTmap structure. A new node is added at the proper locale, with the preceding item now pointing to the new node, and the new node pointing to the next.

DrawTileSet:

The function will receive a HBITMAP (from LoadImage) for the tile set, along with the current BTmap structure. It will dissect the tile set (which is a vertical strip, 64 pixels by n-multiple of 64 pixels) and display the tiles in an orderly fashion in the tile set child window.

DrawGrid:

Will draw the grid according to the tiles indices contained within the tiles struct for the appropriate level.

ParseTile:

This function validates that the loaded file is indeed a bitmap, and of the proper dimensions - 64 by n*64.

AddTile:

Will add the tile index into the tile index array for the specified tile layer at the indicated offset (in Black and Tan coordinates).
XVI. Risk Analysis

A. Overview

Although Black and Tan is one game, it has to be considered 2 separate entities due to the distinct differences of both the Client and the Server. Each of these parts has its own challenges in which our team must overcome. Due to the simplistic design of our game, we feel that all risks are moderate and can be circumvented by release if they appear to be insurmountable.

B. Client

Our client will be responsible for graphics, sound, input, server prediction, collision detection, and some of the physics required to run the game. Our graphics, sound, and input modules are labeled low risk because the bulk of their code was written in the form of a wrapper before Black and Tan’s GDD was completed. This allows us to focus on tasks that our team has not completed in a game project.

Server prediction is labeled a medium risk because no one on the team has programmed such a routine before. Because of this, we have simplified it in sacrifice of more bandwidth being required. Our game requires a broadband connection to the Internet, so this will not exceed our system requirements.

The lobby will also be considered a medium level risk, due to the various synchronization errors that could occur between the chat and game settings between the server and the client. We will be allotting one of our team members to this module full-time throughout most of the semester to ensure that it will be fully functional by gold release.

The HUD (Heads up Display) also relies heavily on server information, and thus is labeled a medium risk. One of our team members will be assigned this module full-time until it is completed.

C. Server

The server is something not required for a 4th semester project, but is something our team requires to further their education and career goals. It is labeled a medium to high risk solely because our networking experience is light. At all times, one of our team members will be completely focused on the message passing between the client and server. Multiple team members may be assigned at times on game logic that must reside on the server to ensure client synchronization. We feel that this is within our risk tolerance due to the dedication of our team, the simplicity of our project, and the low amount of game content required.

XVII. Liability

A. Legal Disclaimer

Reproducing or distributing images or sounds from the game is expressly forbidden unless the artist, Nintendo, and DigiPen Institute of Technology (DIT) have granted permission. All rights reserved by Nintendo. No part of the game may be sold or distributed by any means, electronic or otherwise.

In accordance with these ownership rights, contributors to the game are bound by these same restrictions. This includes all artists, designers, programmers, or anyone else whose work has been included in the final product.

Development Team Disclaimer: The game shall contain no graphic, vulgar, illegal or slanderous content. Nor shall it include content encouraging illegal or obscene language or behavior. Furthermore, no content herein will violate the rules, regulations, and policies of DIT or Nintendo.

B. Team Signoff

Producer:

Nate Cleveland

Technical Director:
Kevin King

Game Designer:

Dan Valerius

Lead Tester:

Brad Wiggins

Product Manager:

Matt Phillips

KEY

is-a (inheritance)

has-a (instance)

Can be instantiated

Either-Or

GuidedMissle

PhysVehicle

Player

HumveeBot

TankBot

BuggyBot

Agent

BaseBot

Sound

SoundData *pFirstSD, *pLastSD

ActiveSound *pFirstSD, *pLastSD

IDS *pDS

IDSBuffer *pPrimeBuffer

init()

release()

update()

playSound(char *)

SoundData

IDSBuffer *pDSBuffer

GetNumSeconds();

friend ActiveSound

friend Sound

Active Sound

bool isDone

SoundData *pSD

uint32 currSecond

IDSBuffer *pCloned

streamSound(void)

DblLink

-------------------------DblLink *next

DblLink *prev

GetNext()

GetPrev()

addToDblList()

removeFromDblList()

freeDblList()

LoadWav

struct WaveFormatEx *

char fileName[64]

ulong numSeconds

MapFile(char*)

ParseWav(char*)

MessageThread

Responsible for:

Receiving Server messages.

Handling Server Msgs.

SoundThread

Responsible for:

Sound init.

Sound Updating

Main Client Program

Responsible for:

Drawing

AI

InputHandling

Thread Killing

etc.

PAGE
1

