Aquarius Postmortem

Thalassic Games

July 6, 2003

What Went Wrong

We didn’t have time to allow the whole team to review and refine the final
TDD - several flaws in the technical design could have been identified early
on and suggested fixes made. This would have increased productivity late
in development.

If we had had time to finish the GDD and TDD in the summer then we
would have had several extra weeks of coding — allowing for the implemen-
tation of some more higher goals and polishing of existing features.

Failure to formalize source control procedures (file and directory nam-
ing conventions, directory structures, and source control usage procedures)
caused some thrashing. On a related note, since not every team member
knew how to use VSS correctly, there was some unnecessary suffering and
lost work. Also, some members of the team just don’t like VSS. In general,
it’s very important that every team member that needs to use a tool knows
how to use that tool correctly. Furthermore, if two or more team members
are to be directly collaborating, it may be necessary to create some formal
sense of ”correct tool usage” to ensure that the team members don’t step
on one another’s toes during development.

The style guide should formalize interface naming conventions, mini-
mization of link-time dependencies, self-containedness of header files, correct
precompiled header usage, and whether .h or .hpp is the correct extension
for a header file. Some feel that it is inappropriate to send text messages
to the compile window. Some feel that a variable naming guideline (noun-
then-verb, for example) would make identifiers easier to find. Finally, the
style guide must be short and terse (1-4 pages). These measures would have
reduced build times, increased code-style consistency, and reduced thrash-
ing.

Long compile times were a problem. In addition to the measures taken



in the style guide, we should consider the future use of libraries once in-
terfaces are finalized (as an added bonus, libraries could help enforce self-
containedness of modules). If libraries are made an integral part of the
development process, streamlining the process of building a library would
be desirable.

Using two compilers caused a little pain. We should have made the
team decision as to whether or not to use two compilers. If yea, we could
have systematically dealt with the two compilers’ idiosyncracies across-the-
board. If nay, sticking with one compiler would have meant we’d only need
to accomodate the weirdnesses of that particular compiler. As it was, we
were relatively lucky to have gotten away with using VC6 and BCB6 — next
time, compiler idiosyncracies could prove to be more destructive.

There was too much voluminous, overly detailed, legal-style text in the
GDD - it took too much time to read and understand. The Ul was clearly
the worst offender: flow-charts, diagrams and RAD prototypes are vastly
preferable to reams of text. An interactive, RAD-created demo is worth ten
thousand words, and each screenshot worth a thousand. On a similar note,
the UI design should have been written at a higher level (maybe even as high
as simply describing what the player can do at a given point in the game)
so that game documentation maintenance — even in the face of significant
changes in the Ul design — is efficient. Much of our UI woes stemmed from
the simple fact that our user interface had to be quite complex.

In general, there was some feeling that documents were too large and
should have been split up into smaller, more granular documents (for exam-
ple, a Ul design document, a ”sample-turn-fluff” document, a core gameplay
document, etc) so that each is more focussed, less intimidating and, hence,
more useful.

Certain sections of the TDD were too low-level to be useful to anyone on
the team except for the writer of the given low-level section. Next time, low-
level design sections should be separated into small ”personal” documents,
leaving only the high level design — the stuff that everyone on the team
should be aware of — in the TDD. For example, we should just use ”generic
containers” in the TDD to improve brevity — implementation details like
which datastructure will be used to hold pending message packets and which
algorithms will operate on this datastructure should be left in a separate,
"personal” document. There was some feeling that bullet points in TDD
were more readable than long endless paragraphs.

The Networking and Messagehandler modules should have been broken
up into more .cpp/.h modules up front for better code organization. Net-
working did not manage memory well — the game can’t run for more than



about half a day before memory leaks defeat it. Next time, memory man-
agement should be prototyped and proven before being designed around.
Macro hackery should have been used to create code that is compiled only
in debug mode — this would have made it much easier and less error-prone
to perform clean error-checking in the debug build that is optimized away
in release.

Building a good independent testing framework for every module is part
of the software-engineering process and needs to be planned for from the
beginning — our testing frameworks were incredibly useful but were also a
cause of frustration as they broke every couple hours due to others’ updates.

There was some feeling that the second semester scheduling wasn’t as
good as the first — more on that later.

Some felt that being split across two rows hindered communication — but
being elbow-to-elbow is also felt to be suboptimal as well. Some missed the
lack of windows. No fix for this in DigiPen, but in the real world, people
get offices.

Click tracking the soundtrack wasn’t rigorous enough — the interactive
soundtrack failed. Next time, outside musicians should be required to play
along with music tracks that are known to be perfectly in time.

There was not enough development time. This lack caused John to ditch
two classes, first playable to come along much later than we’d have liked,
and feature lockdown to never occur. Team time was not entirely realistic
— our scrounging for a few spare hours was only partially successful, since
frequently team members would arrive very late — which, of course, castrates
the focussed productivity team time is supposed to provide. Finally, when
it became apparent that Matt Phillips could not work on the project, some
felt it would have been appropriate to re-evaluate the design of the game to
narrow its scope.

Code reviews would have been great — it likely would have propagated
knowledge throughout team, helped individuals to kick bad habits and get
new perspectives on their code, but even having one other team member
read through another’s milestone codebase on a regular basis would have
been inconceivable given our time-frame.

A formalized high-level testing procedure late in development could have
kept the game more bug-free and more fun, but even having the team test all
major features on a weekly basis was not reasonable given our time-frame.
Finally we didn’t have time to really test John’s Al System hypothesis to
see if it does good, general Al — we were working on core features right up
until the end.

Another development approach — that is nearly impossible to practically



implement at Digipen — is to do a very small, high level GDD, then have
coders prototype the technologies that are the most core and the most dif-
ficult, and then base the game on those prototypes. In the real world, it
was agreed that one needs at least nine months to allow for 1-3 months
of prototyping, for a game of modest scope. Finally, the consensus was
that prototyping gameplay (possibly using middleware) made for a more
fun game, and prototyping technology made for less risk come production
time.

What Went Right

The team. As individuals and as a group, we were highly motivated, cared
about our work, had good communication, and had pretty compatible work
styles — we figured out what we were going to do, how we were going to do
it and then stuck to plan.

The team time that we did manage to achieve was very productive.

We got experience in taking the design-bible methodology to its logical
extreme, and came a long way in knowing how much (and what kind of)
documentation is actually useful. In a nutshell: much less game design docu-
mentation and much higher level, more flexible game design documentation.

doxygen worked great — it provided good documentation and enforced a
good style of commenting. John Corpening uses it professionally.

John Corpening got both the Al and Ul core features done — exemplary,
given that he was essentially doing the job of two.

Higher goals allowed us to painlessly cut features as necessary and still
accomplish all that we could — we still got the core design and then some
done, even without Matt Phillips. As an example of this, the non-interactive
music worked out OK — we successfully used a backup plan after the interactive-
music preproduction ambitions failed.

Supportive ”Publishers”. Both Larsen and Moore, almost without ex-
ception, stayed out of our hair and let us work our own way. And they both
gave us As!

Object-oriented technical design was successful. We thought the de-
sign through, and that up-front thoroughness paid off when integration was
smooth and relatively painless. In particular, the command pattern (which
provides a specialized interface wrapper around an object) worked well: the
graphic client, tank client and sound client didn’t bog down interfaces, were
clean and easy to use and supported encapsulation and code organization.

The MessageHandler succeeded in hiding Networking from the rest of the



game system — it could have been even better had we used command-pattern
clients to improve code organization

Successfully learned about software engineering and software design.

Successfully learned about Al It seems as though the theoretical con-
cepts of machine learning are a deep introduction to Al in general — John
feels that Aquarius specifically helped him do better work professionally.

There was some feeling that the more detailed scheduling of the first
semester was successful. Detailed schedules can help give sharper project
visibility and is very important early in development when task dependencies
can slow people down. Therefore, schedules must be at least detailed enough
to prevent task dependencies from becoming an issue. On a related note,
task dependencies should designed and scheduled to work out at the highest
level of scheduling possible to ensure good modular design. One suggestion
was to have two layers of scheduling — a general schedule and more specific,
fine-grained schedule to support those who prefer to work with either type
of schedule.

Graphics turned out much better than expected — the game looked pretty
good!

Got experience with VSS (a good thing, since VSS and CVS are industry
standards).

Didn’t succumb to the temptation to change tools midway through de-
velopment (from VSS to CVS), which almost certainly would have been far
more trouble than it was worth.



