
Technical Design Document
Version 1.0

Team Thalassic

Contents

1 Document Conventions 5
1.1 Highlighted Text and other Caveats 5

2 Introduction 6
2.1 Module overview . 6
2.2 Global Data . 7
2.3 Program Flow . 8

2.3.1 Start up . 8
2.3.2 Main loop . 8
2.3.3 Shut down . 8

3 Message Handler 9

4 Networking 12
4.1 UDPNetworking . 12
4.2 GameNetworking namespace . 13

4.2.1 GameNetworking class . 13
4.2.2 Thread Object . 16
4.2.3 Server . 17
4.2.4 Client . 18
4.2.5 RemoteMachine . 19
4.2.6 ReceiveSocksToWaitOn 19
4.2.7 Packet . 21
4.2.8 NetMessage . 22
4.2.9 Event . 24

5 AI System 26
5.1 AI Module . 26

5.1.1 Percept Generation . 27
5.1.2 Decision Making . 29
5.1.3 Genetic Algorithm . 30

5.2 Genetic Algorithm Module . 31
5.3 Brain Manager . 31
5.4 Implementation Design . 32

5.4.1 Attribute . 32
5.4.2 Actions . 32
5.4.3 Fitness Functions . 33
5.4.4 Percept Generator . 34
5.4.5 AI Units . 35
5.4.6 Action Decision Nodes . 36
5.4.7 AI Module . 36
5.4.8 Genetic Algorithm Module 38
5.4.9 Brain Manager . 38

5.5 AI Techniques . 39

1

5.5.1 Naive Bayes Classifiers . 40
5.5.2 Implementation . 44
5.5.3 Decision Trees . 48
5.5.4 Backward Propagation Neural Networks 51

5.6 References . 53

6 Tank Simulator 54
6.1 Definition of Terms . 54
6.2 Primary Interfaces . 54
6.3 Dependencies . 54
6.4 Internal Details . 55

7 Interpretation Module (Fish Body) 57
7.1 Potential Fields . 57
7.2 Commands . 57
7.3 Attributes, Stats and Other Maintained Data 59
7.4 Class List . 61

8 Physics Simulator 63
8.1 Definition of Terms . 63
8.2 Primary Interfaces . 63
8.3 Dependencies . 64
8.4 Simulation Methods . 64
8.5 Internal Details . 64

9 Height Map 66
9.1 Definition of Terms . 66
9.2 Primary Interfaces . 66
9.3 Graphical Aspect . 66
9.4 Dependencies . 66
9.5 Internal Details . 67

10 Graphics 68
10.1 Graphics Clients . 68

10.1.1 Interface . 68
10.1.2 Implementation Details 69
10.1.3 Implementation Concerns 69

10.2 Driver . 69
10.2.1 Interface . 69
10.2.2 Implementation Details 70
10.2.3 Implementation Concerns 70

10.3 Model . 71
10.3.1 Interface . 71
10.3.2 Implementation Details 71
10.3.3 Implementation Concerns 71

10.4 AnimatedModel . 71

2

10.4.1 Interface . 71
10.4.2 Implementation Details 71
10.4.3 Implementation Concerns 71

10.5 Texture . 72
10.5.1 Interface . 72
10.5.2 Implementation Details 72

10.6 SubTexture . 72
10.6.1 Interface . 72

10.7 Font . 73
10.7.1 Interface . 73

10.8 WideFont . 73
10.9 Sprite . 73

10.9.1 Interface . 73
10.10Sprite3D . 74

11 Sound 75
11.1 Sound class . 76
11.2 HSound . 77
11.3 SoundSystem Class . 77
11.4 Sound Fmod Class . 78
11.5 Sound Clients . 80

12 Menu System 82
12.1 The UI Handler . 82
12.2 Public Interface . 82
12.3 Screen Class . 82

12.3.1 Public Interface . 83
12.3.2 Public Class Definition . 84

12.4 MenuItem Class . 84
12.4.1 Public Interface . 85
12.4.2 Public Class Definition . 85

12.5 Menus . 85
12.5.1 Public Interface . 86
12.5.2 Public Class Definition . 86

12.6 Mouse Cursor . 86
12.6.1 Public Interface . 87
12.6.2 Public Class Definition . 87

12.7 Key Map . 87
12.7.1 Public Interface . 87

12.8 Derived GUI Objects . 88
12.9 Console . 88

13 Threading 90
13.1 Threading Locations . 90
13.2 Thread Implementation . 90
13.3 Thread Safety (Mutexing) . 92

3

14 Debug Module 96
14.1 Public Interface . 98
14.2 Public Class Definition . 98

15 File Management 99
15.1 Classes . 99
15.2 Dependencies . 99
15.3 Interfaces . 99
15.4 Functions . 99

16 Input module 100
16.1 Public Interface . 100
16.2 Public Class Declaration . 101
16.3 Input Constants . 102

17 Timer 102
17.1 Members . 102
17.2 Methods . 103
17.3 Public Class Declaration . 103

18 Math 104
18.1 Classes . 104
18.2 Dependencies . 104
18.3 Interfaces . 104

18.3.1 Matrix2 . 104
18.3.2 Vector2 . 105
18.3.3 Shared Functions . 106

18.4 Functions . 106
18.5 Example code . 107

A Team Sign Off Sheet 108

4

1 Document Conventions

1.1 Highlighted Text and other Caveats

Highlighted Text refers to a Higher Goal. When un-Highlighted text is fol-
lowed by contradictory Highlighted Text, the functionality described by the
Highlighted Text will eventually supersede the functionality described by the
un-Highlighted text. While the Project Planning Timeline plan for implement-
ing everything described in this document, all Highlighted Text can be cut from
the design at any time for any reason.

5

2 Introduction

Project Aquarius is an evolutionary simulation set in a 3D aquatic environment.
The primary focus of the project is to explore a variety of artificial intelligence
techniques by allowing them to run in a genetic algorithm. The vehicle for
selection of this algorithm is survival in the aquatic environment.

2.1 Module overview

The code is divided into encapsulated modules that communicate via the mes-
sage handler. The modules are briefly described below. Detailed descriptions
are available in the modules corresponding TDD section.

Message Handler All inter-module communication goes through the Mes-
sage Handler. This message handler will make Networking invisible to the
system by routing messages to objects not on the current computer to other
connected computers. The Message Handler is the central nervous system of
the program.

Networking The networking module will be invisible to the system since all
messages will be sent via the message handler. It will employ UDP packets to
transmit messages to connected computers.

AI The AI system will handle decision making for fish within the system as
well as evolving fish within the system.

Tank The tank is the ecosystem manager. It manages terrain, physics, fish
bodies, plankton, current and other objects that may appear in the game envi-
ronment.

6

Physics The physics module will handle object physical interactions in the
game environment including collisions, buoyancy and fluid movement.

Graphics The graphics module will handle all graphics using OpenGL. It will
handle preparing the window for use with OpenGL.

Sound The sound module will handle all sound effects and streaming sounds
within the game.

Menu System The menu system will consist of GUI primitives that will allow
the construction of all interface screens within the game.

Support Services In addition to the main systems, there will be several
support systems available to assist the main systems.

Threading The threading module will provide support for multi-threading.

Debugger The debugger will provide support for displaying messages that
are used by the programmers to track errors or to ensure that the code is working
properly.

File I/O The file I/O manager will provide support for saving and loading
data to files.

Player Input The player input module will poll devices for input from
the user. It will make this information available to the system.

Math The math module will include classes for points, vectors as well as
common linear algebra operations.

Timing Object Will provide information regarding time, frame rate and
time steps.

2.2 Global Data

Game State The state of the game will be available as global data. Possible
states are online, offline and pause.

Online Standard game mode
Offline UI screen displayed in place of 3D tank graphics.

Simulation progresses at an accelerated rate.
Pause Pauses the game.

Windows HINSTANCE The handle to the windows instance will be made
globally available for external libraries that may need this information.

7

Timing Object Since several objects will need time updates every frame, this
is made globally available for efficiency.

Debugger The debugger object will be made globally available to reduce
debugger dependencies.

2.3 Program Flow

2.3.1 Start up

The order of object initialization is as follows:

1. Graphics

2. Sound

3. Message Handler

4. Support Systems

5. Networking

6. Tank

7. AI

8. UI

2.3.2 Main loop

When the game starts it will initially be in the pause state. During this time
the user interface will go through its intro screens. After the intro screens are
done the game will go into online mode.

Timer.logic Gets current time and performs frame rate calculations
Networking.logic Network messages are sent and received
UI.logic Input devices are polled

User input is processed
AI logic AI processing
AI.breed Genetic Algorithm is processed
Tank.logic Environment, fish and physics processing
Sound.play Sound module processing
Graphics.draw Graphics module processing

2.3.3 Shut down

The system is shut down in the reverse order of start up.

8

3 Message Handler

The Message Handler has several purposes:

1. It will decouple the data that defines the current state of the Environ-
ment (the Tank Simulator) from the operations that nondeterministically
modify that data (Player Input and AI [and Networking, which acts as a
surrogate for remote Player Input and AI]).

2. It ensures that the Networking, Player Input, AI and the Tank Simulator
are able to use a simple interface to exchange data with the rest of the
system.

3. It hands out, and keeps track of, the numbers that uniquely identify every
Fish and Object in the Aquarium.

Dependencies
Tank Simulator
Networking
UI
AI

Patterns To Be Applied
Mediator
Singleton

Implementation The MessageHandler’s unique 32-bit Key generation will be
encapsulated as a private function (GenerateKey()); the associated data will be
private as well. The most significant bit of the 32-bit key will be set if the Key
is Official (that is, generated by a Server); the most significant bit will not be
set if the Key is Unofficial (that is, generated by a Client). A complementary
ReturnKey() function is provided to ”free” a Key so that it can be used to
identify a different entity. unsigned int is typedef’d to be Key.

The MessageHandler will have a private function that will allow it to Vali-
dateKey() (which throws an exception if passed an illegal Key) to localize bugs
resulting from illegal Keys. This function could be removes late in development
for a small speed increase if necessary.

The MessageHandler will keep pointers to the Networking, AI, UI and Tank
Simulator modules. It also provides public functions that allow each of these
modules, in their constructors, to “register” with the MessageHandler by passing
their “this” pointers – in exchange, the MessageHandler will provide a Message-
Handler reference to the “registering” module. It will most certainly crash if one
were to attempt to use its functionality before these pointers were initialized.

The MessageHandler is a monolithic structure that encapsulates a series of
functions that correspond to every message that the AI, Networking, UI and

9

Tank Simulator modules can send to one another. It is entirely reactive – that is,
it never initiates any action by itself, but instead Mediates interactions between
the AI, Networking, UI and Tank Simulator modules.

Although the public functions of the MessageHandler will be defined by the
modules it Mediates (and will most definitely evolve and change as development
progresses), there are several basic kinds of functions that the MessageHandler
will provide. Examples follow:

1. Functions that do not need to be sent over the Network.

unsigned int GetFishHealth (Key FishKey , int &FishHealth)
{

ValidateKey (FishKey) ;
return tankSimulator−>TankSimulator : : GetFishHealth (FishKey ,

FishHealth) ;
}

2. Functions that need to be sent over the Network.

void MoveFish (Key FishKey , FishMovementData &FishMovement)
{

ValidateKey (FishKey) ;
tankSimulator−>TankSimulator : : MoveFish (FishMovement) ;

GameNetworking : : NetMessage netMsg ;
netMsg . SetID (GameNetworking : :FISH MOVEMENT) ;
netMsg . Write4Bytes (FishMovement) ;
networking−>GameNetworking : : SendNetMessage (netMsg) ;

return ;
}

3. Functions that require the MessageHandler to generate a new Key.

void CreateNewFish (FishData & f i shData)
{

f i shData . Key = GenerateNewKey () ;
tankSimulator−>TankSimulator : : CreateNewFish (f i shData) ;

GameNetworking : : NetMessage netMsg ;
netMsg . SetID (GameNetworking : : CREATE NEW FISH) ;
netMsg . Write4Bytes (f i shData) ;
networking−>GameNetworking : : SendNetMessage (netMsg) ;

return ;
}

10

4. Functions that return a Key to the MessageHandler.

void DestroyFish (FishData & f i shData)
{

ValidateKey (FishKey) ;
ReturnKey (f i shData . Key) ;
tankSimulator−>TankSimulator : : DestroyFish (f i shData) ;

GameNetworking : : NetMessage netMsg ;
netMsg . SetID (GameNetworking : : DESTROY FISH) ;
netMsg . Write4Bytes (f i shData) ;
networking−>GameNetworking : : SendNetMessage (netMsg) ;

return ;
}

class MessageHandler
{
private :

//Key genera t ion data
//ValidateKey () , GenerateNewKey () , ReturnKey ()
// po in t e r s to Networking , AI , UI and TankSimulator modules

public :
RegisterNetworking () , Reg i s terAI () , e t c . f un c t i on s
//Lots o f f unc t i on s t ha t d e f i n e intercommunicat ions between
// the Networking , AI , UI and TankSimulator modules . Some
// examples in add i t i on to the above
Col lectServerUpdate ()
In s t i tu t eSe rve rUpdate ()
Jo inServer ()
F i shBite ()
// . . . and so f o r t h

} ;

Concerns The MessageHandler module is a potential bottleneck. Each func-
tion in the MessageHandler is essentially overhead, and therefore must execute
with the utmost speed.

Failure to return Keys will eventually cause the game to choke, as the Mes-
sageHandler endlessly searches for an unused Key.

11

4 Networking

The Networking Module is intended to be used to send and receive well-defined
unreliable data packets between computers remotely participating in a game.

4.1 UDPNetworking

The UDPNetworking class will be a collection of public functions that wrap the
WinSock 2.2 API. It will provide the low level Networking functionality that
the GameNetworking class will require.

Dependencies
None

Patterns To Be Applied
Singleton

Implementation The IP Address and Host Name of the local machine will be
encapsulated as private data. This frees clients of UDPNetworking from having
to know about their own local address information.

UDPNetworking’s constructor will start up WinSock 2.2 system. It will
initialize the private local address information. Throws an exception on failure.

CreateSock() takes a pointer to a SOCKET and a port number (which can
be ANY PORT if the user does not care which port the SOCKET resides on).
CreateSock() either sets the SOCKET pointer to point to a valid SOCKET or
throws an exception.

DestroySock() takes a SOCKET. It either frees the resources associated with
this SOCKET or throws an exception.

SendPacket() takes the SOCKET to send from, the port and IP address to
send to, a void ∗ to the data to be sent, and the size, in bytes of, the data to
be sent. It throws an exception if the size of the data to be sent is greater than
MAX PACKET SIZE or on failure – otherwise it sends the specified data from
the specified SOCKET to the specified port at the specified IP Address.

ReceivePacket() takes the socket to receive on, a pointer to the buffer that
is to hold the received data, the size of the buffer that is to hold the received
data, a pointer to an IP Address and a pointer to a Port. ReceivePacket() will
not return until data becomes available to be read from the specified socket.
If ReceivePacket() returns, the received data is placed in the specified buffer,
the IP Address pointer will point to the IP Address of the sender, and the
Port pointer will point to the port number the sender sent from. If an error is
encountered, ReceivePacket() throws an exception.

MyIPAddress() takes no parameters and returns the local machine’s IP Ad-
dress.

UDPNetworking’s destructor will shut down the WinSock 2.2 system. Any
SOCKETs that remain open will be closed, and any data queued up to be
received on them will be discarded. Throws an exception on failure.

12

class UDPNetworking
{
private :

//IP Address and Host Name o f the l o c a l machine
public :

UDPNetworking ()
˜UDPNetworking ()
CreateSock ()
DestroySock ()
SendPacket ()
ReceivePacket ()
MyIPAddress ()

} ;

ANY PORT will be a constant value defined in the UDPNetworking names-
pace. It can be passed as an argument to the Port parameter of CreateSock().

MAX PACKET SIZE will be a constant value defined in the UDPNetwork-
ing namespace – it is equal to the size, in bytes, of the largest possible ”payload”
of an unreliable data packet.

Concerns UDPNetworking is not a flawless abstraction of the WinSock 2.2
API. For example, it exposes the SOCKET datastructure to its clients, as well as
propagating WinSock’s notions of 2 byte unsigned integral Port numbers and 4
byte unsigned integral IP Addresses. This has the potential to cause confusion,
especially in programmers not familiar with WinSock.

4.2 GameNetworking namespace

The GameNetworking namespace encompasses the classes that implement the
networking logic the game requires. Many of these classes require that the
UDPNetworking class has already been instantiated.

4.2.1 GameNetworking class

GameNetworking class is the base class for the Server and Client classes. It
encapsulates functionality common to both subclasses.

Dependencies
UDPNetworking
MessageHandler

Patterns To Be Applied
Singleton

13

Implementation GameNetworking privately encapsulates a mutexed list of
Events (Events contain NetMessages that are waiting to be sent to the Mes-
sageHandler).

GameNetworking privately encapsulates a Thread object that asynchronously
retrieves Packets from the SOCKETs in ReceiveSocksToWaitOn. If the re-
trieved Packet has more than one TotalPage, the function scans through the
list of Events, searching for an Event that contains a NetMessage that has
the same DocumentNum as the current Packet – if one is found, the current
Packet is NetMessage.ConcatenatePacket()’ed to that NetMessage. Otherwise
the Packet either has only one TotalPage or no Event in the Event list contains
a NetMessage that has the same DocumentNum as the Packet, and the Thread
NetMessage.ConcatenatePacket()’s the Packet, places that NetMessage into an
Event (timestamping the Event and recording the IP Address of the sender of
the NetMessage), and places the Event in the mutexed list of Events.

GameNetworking privately encapsulates the method GenerateDocument-
Num(), as well as the unsigned int curDocumentNum. curDocumentNum is
initialized to 0 in GameNetworking’s constructor, and each time GenerateDoc-
umentNum() is called, the function simply increments curDocumentNum by 1
and returns it by value. The function is intended to be used to stamp an outgo-
ing NetMessages’ Packet(s) with the same DocumentNum, so that the Packets
can be reassembled into a single NetMessage on the receiving end. Since cur-
DocumentNum will only wrap back around to 0 after 232 NetMessages have
been sent, there is practically no danger of stamping two different NetMessage’s
Packets with the same DocumentNum.

GameNetworking contains a protected SOCKET for receiving packets (re-
ceiveSock), and the port at which receiveSock listens (receivePort).

GameNetworking contains the protected member object ReceiveSocksToWaitOn,
which encapsulates one SOCKET for each remote player the GameNetworking
is staying in contact with.

GameNetworking encapsulates, as protected members, a SOCKET reserved
for sending packets (sendSock), a list of RemoteMachines that it is currently
concerned with staying in contact with, a reference to the UDPNetworking
object, and a reference to the MessageHandler object.

GameNetworking encapsulates the protected member function ProcessEv-
ents(), which does a linear scan through the mutexed list of Events. An Event
whose timestamp shows that it is ”expired” (that is, a large NetMessage that
was split into two or more Packets when it was sent has been only partially
received – and at least one of the NetMessage’s Packets has not yet been re-
ceived in PACKET TIMEOUT milliseconds) is removed from the list, and dis-
carded (NetMessage.DeallocatePacket()’ed). An Event that contains a NetMes-
sage which contains all of its Packets is taken off of the mutexed list. Next, the
function makes note of the fact that a RemoteMachine just communicated to it
(by finding the RemoteMachine whose IP Address matches the IP Address of
the sender of the Event and setting RemoteMachine.timeSinceLastUpdate = 0),
and finally NetMessage.GetID()’s in order to determine which MessageHandler
function to pass the NetMessage to.

14

GameNetworking encapsulates the protected member function DetectRemoteMa-
chineDelinquency(), which iterates through the list of RemoteMachines, and,
whenever it finds a RemoteMachine that has not communicated in TIMEOUT
milliseconds, it informs the MessageHandler.

GameNetworking’s constructor and destructor are protected, to ensure that
only derived classes can instantiate it. GameNetworking’s constructor Re-
ceiveSocksToWaitOn::AddSock()’s the ReceiveSock, and sets curDocumentNum
to 0.

GameNetworking provides a public SendNetMessage() function that takes a
NetMessage (by value). SendNetMessage() sets the first four bytes of each of
the NetMessage’s Packets to the same DocumentNum (so that the receiver can
recognize that all of these Packets should be reassembled into a single NetMes-
sage) by calling GenerateDocumentNum(), and then sends every Packet in the
NetMessage to every RemoteMachine on the list of RemoteMachines by repeat-
edly calling UDPNetworking::SendPacket().

GameNetworking encapsulates the public method NotifySelf(), which takes
a NetMessage (by value) as a parameter. It forwards the argument to UDPNet-
working::SendPacket(), and fills out the IP Address argument with the local IP
Address obtained from UDPNetworking::MyIPAddress() and the port argument
with receivePort.

GameNetworking encapsulates the public member function BootRemoteMa-
chine(), which takes the IP Address of the remote machine to disconnect. If
the specified RemoteMachine is on the list of RemoteMachines, the function
GameNetworking::SendNetMessage()’s a DISCONNECT message to that re-
mote machine, ReceiveSocksToWaitOn::RemoveSocket()’s the SOCKET that
was earmarked to receive messages from that remote machine and removes the
corresponding RemoteMachine from the list of RemoteMachines, and returns
true. If the specified Machine to boot is not on the list of RemoteMachines, the
function returns false.

GameNetworking provides the public ConfigurePacketLoss() method, which
takes the same arguments as ReceiveSocksToWaitOn()::ConfigurePacketLoss()
– it simply forwards the arguments to ReceiveSocksToWaitOn()::ConfigurePacketLoss().

class GameNetworking
{
private :

r e c e i v eSocke t
r e c e i v ePo r t
mutexed l i s t o f (incoming) Events
Thread ob j e c t
GenerateDocumentNum ()
curDocumentNum

protected :
ReceiveSocksToWaitOn ob j e c t
sendSocket

15

MessageHandler r e f e r e n c e
UDPNetworking r e f e r e n c e
l i s t o f RemoteMachines
ProcessEvents ()
DetectRemoteMachineDelinquency ()
GameNetworking ()
˜GameNetworking ()

public :
SendNetMessage ()
No t i f y S e l f ()

} ;

4.2.2 Thread Object

Thread is a function that runs in a separate thread of execution. It waits
on the RemoteMachines specified by a GameNetworking object by using the
ReceiveSocksToWaitOn object. When incoming data appears on the specified
SOCKETs, the function receives the data, composes an Event from it, and
pushes the Event onto the mutexed queue of Events in the GameNetworking
object.

The Thread object’s control flow is as follows:

• It is passed a reference to the ReceiveSocketsToWait object, a reference
to the UDPNetworking object, and a reference to the list of Events upon
launch of the Thread.

• Declares a local buffer of memory that is the same size as MAX PACKET SIZE.

• Loops infinitely on the following:

• Checks the boost thread property to see if RemoveThread() has been
called on it. If so, the Thread function returns (terminating itself).

• ReceiveSocksToWaitOn.Wait()s until there is data to be received on one
or more of the specified SOCKETs

• For each ready socket, the function retrieves the sent Packet (using UDP-
Networking::ReceivePacket()) into the local memory buffer. It then does a
linear scan of all Events on the mutexed list of Events. If it finds an Event
that has a NetMessage that has the same DocumentNum as the locally
buffered Packet, it NetMessage.ConcatenatePacket()s the locally buffered
Packet to that NetMessage. Otherwise, it creates a NetMessage, NetMes-
sage.ConcatenatePacket()’s the locally buffered Packet to that NetMes-
sage, creates an Event (by timestamping the Event and recording the IP
Address of the sender of the locally buffered Packet) and pushes the Event
onto the mutexed list of Events.

16

Concerns The Thread object currently does not have access to a timer object,
so it has no way of timestamping the Events that it creates. It must somehow
be passed a reference to a timer object.

4.2.3 Server

The Server is a subclass of GameNetworking. It is to be instantiated whenever
the local game is to act in a Server capacity, and destroyed whenever the local
game should not behave like a Server.

Dependencies GameNetworking

Patterns To Be Applied Singleton

Implementation The Server privately encapsulates the number of millisec-
onds it has been since the last time a SERVER UPDATE NetMessage has been
GameNetworking::SendNetMessage()’ed to all the RemoteMachines.

Server encapsulates AcceptClient(), a public method that takes the IP Ad-
dress of a Client and the Port at which that Client is receiving data at. First, it
UDPNetworking::CreateSocket()’s a new SOCKET, and ReceiveSocksToWaitOn::AddSocket()s
this SOCKET. AcceptClient() then adds the specified Client to the list of Re-
moteMachines, and NotifySelf()’s to ensure the Thread is responsive to the new
Client’s messages right away.

DoNetworking() takes no arguments. The method GameNetworking::ProcessEvents()’s,
and GameNetworking::DetectRemoteMachineDelinquency()’s. It then updates
timeSinceLastServerUpdated, and, if it’s that time again, collaborates with the
MessageHandler to SendNetMessage() a SERVER UPDATE.

Server’s constructor sets timeSinceLastServerUpdate = 0.
Server’s destructor BootRemoteMachine()’s any RemoteMachines that are

in contact.

class Server : GameNetworking
{
private :

// t imeSinceLastServerUpdate
public :

// AcceptCl i en t ()
//DoNetworking ()
// Server ()
//˜ Server ()

} ;

Concerns None

17

4.2.4 Client

The Client is a subclass of GameNetworking. It is to be instantiated whenever
the local game is to act in a Client capacity, and destroyed whenever the local
game should not behave like a Client.

Dependencies
GameNetworking

Patterns To Be Applied
Singleton

Implementation
Client privately encapsulates a boolean value that describes whether or not
it has successfully established contact with a Server. Connected() is a public
method, which returns this value to the user.

Client’s constructor takes the Server’s IP Address and Port as arguments.
It adds a RemoteMachine (filled out with the provided IP Address, Port and
the GameNetworking::receiveSock) to the list of RemoteMachines.

DoNetworking() takes no arguments. It will GameNetworking::ProcessEvents().
If the Client is not Connected, then DoNetworking will GameNetworking::SendNetMessage()’s
a HELLO NetMessage to the Server. If the Client is Connected, DoNetworking()
will GameNetworking::DetectRemoteMachineDeliquency().

QuitServer() takes no arguments. It calls BootRemoteMachine(), passing
the IP Address of the only RemoteMachine that should be on the list of the
RemoteMachines – the server.

class Cl i en t : GameNetworking
{
private :

bool connected ;
public :

Connected ()
DoNetworking ()
C l i en t
˜ C l i en t

} ;

The following are constant values defined in the GameNetworking names-
pace.

TIMEOUT is equal to the number of milliseconds before the MessageHandler
is informed of a RemoteMachine’s lack of communication.

PACKET TIMEOUT is equal to the number of milliseconds that must pass
before a partially constructed NetMessage (a NetMessage inside an Event [which
is sitting on the Event list] still waiting to be NetMessage.ConcatenatePacket()’ed
with one or more Packets) is discarded.

18

Concerns None

4.2.5 RemoteMachine

Overview
The RemoteMachine encapsulates all the information necessary to refer to a
remotely connected game.

Dependencies
None

Patterns to Be Applied
None

Implementation RemoteMachine encapsulates the port number that one
would GameNetworking::SendNetMessage() to when sending a NetMessage to
this remote machine, the SOCKET that is earmarked to receive Packets from
the remote machine, the time (in milliseconds) since this particular remote ma-
chine last communicated with the local machine, and the IP Address the remote
machine resides at.

struct RemoteMachine
{
public :

//PortToSendTo
//SockeToReceiveFrom
//TimeSinceLastUpdate
// IPAddress

} ;

Concerns RemoteMachine acts as a collection of WinSock 2.2 datatypes. As
such, it makes no effort to abstract the WinSock library and hence should be
considered strictly a low level object.

4.2.6 ReceiveSocksToWaitOn

ReceiveSocksToWaitOn abstracts the concept of waiting for data to be received
by a set of SOCKETs. It allows the user to use a high level interface to specify
which SOCKETs to wait on, actually wait for data to be sent to one or more
of the SOCKETs, and then retrieve which SOCKETs have Packets ready to be
received. Finally, it allows the user to simulate internet latency by allowing the

19

user to specify how often, and for how long, batches of Packets will be discarded
rather than received.

Patterns To Be Applied
None

Implementation ReceiveSocksToWaitOn privately encapusulates a mutexed
list of SOCKETs that are to be waited on (waitOn), and a list of SOCKETs that
have data ready to be received (ready). It also privately contains a boolean value
that defines whether or not Packet loss simulation is active, another boolean
value that defines whether or not Packets should currently be discarded rather
than received, the PacketLossOccurrencebase, PacketLossOccurrencedelta, PacketLossLengthbase,
PacketLossLengthdelta information, and a timer object to allow the Packet loss
simulation to operate as specified. Finally, it privately encapsulates the fd set
structure that is used to coerce WinSock to actually wait on the sockets listed
in WaitOn.

ReceiveSocksToWaitOn’s constructor clears both lists, sets both boolean
values to false and zeroes out all Packet loss information, thus establishing
a ”blank slate” invariant.

ReceiveSocksToWaitOn provides AddSocket(), RemoveSocket() and RemoveAll-
Socket() functions, that behave as the user would expect to specify which SOCK-
ETs should be waited on (ie adds or removes SOCKETs from the SOCKET list
waitOn).

ReceiveSocksToWaitOn provides a public Wait() method. Wait() will block
control flow until one or more of the SOCKETs on the waitOn list have data
ready to be received on them. It will then return, and the SOCKETs that
have data ready to be received on them will be listed on the private ready list.
It accomplishes this by first removing all SOCKETs from the ready list and
FD ZERO()’ing the fd set. Next, it FD SET()’s every SOCKET in the waitOn
list into the fd set, and calls select() on the fd set with an infinite waiting
period. When a Packet arrives on one or more of the SOCKETs listed in the
fd set, select() will return, having already replaced the SOCKETs in the fd set
with the subset of SOCKETs that have data waiting to be received on them.
Wait() puts all these SOCKETs into the ready list (via FD ISSSET() and the
waitOn list) and then returns.

ReceiveSocksToWaitOn provides a public ConfigurePacketLoss() method,
which takes the base amount of time to simulate a burst of packet loss (PacketLossOccurrencebase),
the random delta amount of time to modify this base time by (PacketLossOccurrencedelta),
the base amount of time a burst of packet loss lasts for (PacketLossLengthbase),
and the random delta amount of time to modify this base time by (PacketLossLengthdelta).
All arguments are measured in milliseconds. If this function is called, then ev-
ery PacketLossOccurrencebase ± PacketLossOccurrence(delta) milliseconds,
for PacketLossLengthbase±PacketLossLengthdelta milliseconds, ReceiveSock-
sToWaitOn will throw away every incoming Packet. This is intended to simulate
the ”batches” of lost packets that is the hallmark of Internet latency.

20

Thread is made a friend of this ReceiveSocksToWaitOn, so that ReceiveThread
can access the private list ready, thereby finding out which SOCKETs are ready
to have data received on them.

class ReceiveSocksToWaitOn
{
private :

//mutexed l i s t <SOCKET> waitOn ;
// l i s t <SOCKET> ready ;
// f d s e t s e t ;
//Packet Loss Simulat ion Informat ion

public :
//AddSocket
//RemoveSocket
//RemoveAllSockets
//Wait
//ReceiveSocksToWaitOn
//˜ReceiveSocksToWaitOn
// f r i e nd ReceiveThread ;

} ;

Concerns None

4.2.7 Packet

Encapsulates the payload of a low level UDP message.

Implementation A Packet is a buffer of memory no larger than MAX PACKET SIZE.
(unsigned char *)s are typedef’d to be (Packet *)s, for purposes of readability
and abstraction.

• The zeroth, first, second, and third bytes of a Packet will be its Document-
Num. Each Packet in a given NetMessage will have the same Document-
Num, thereby allowing the Packets (each of which will be sent separately)
to be reconstructed into the same NetMessage on the receiving end.

• The fourth byte of a Packet will be its PageNum. This zero based integer
defines the order the Packets of the NetMessage should be read from. The
NetMessage’s map of Packets uses the PageNum as its key.

• The fifth byte of a Packet will be the total number of Packets in the
NetMessage. In other words, if this value is greater than 1, then there are
sibling Packets in the NetMessage.

21

• The sixth, seventh and eighth bytes of a Packet will be the size, in bytes,
of the rest of the Packet (including the Packet ID).

• The ninth and tenth bytes of a Packet will the Packet ID. This will cor-
respond to the type of information the rest of the Packet is carrying (for
example, FISH MOVE, or SERVER UPDATE).

Concerns
None

4.2.8 NetMessage

The NetMessage is the high level unit of data that is GameNetworking::SendMessage()’ed
to remotely participating machines.

Implementation NetMessage privately encapsulates a map of (Packet *)s
that use the PageNum of the Packet as the key. It also contains private data
such as curPacket (the current Packet being written to), curByte (the next byte
within the current Packet that is to be written to), totalPages (the total number
of Packets in the NetMessage), and a boolean value describing whether or not
the NetMessage has entered Read Mode.

NetMessage contains a private boost::singleton pool. This object is used to
allocate and deallocate blocks of memory – Packets – of size MAX PACKET SIZE.

NetMessage uses the private function NewPacket() to properly create a new
Packet. The function allocates a new Packet from the boost::singleton pool,
increments totalPages and curPacket, sets curByte to be equal to the first byte
after the header information, sets the PageNum field of the new Packet to be
equal to curPacket, and adds the new (Packet *) to the map,

NetMessage publicly encapsulates a suite of Write functions – Write1Byte(),
Write2Byte(), Write4Byte() and Write8Byte(). Each of these functions takes a
pointer to a (void *), and, provided Read Mode has not been entered, updates
the Size field of Packet number curPacket to reflect its new size, and places the
argument into the Packet at position curByte if there is still enough space re-
maining in the Packet to do so. If there isn’t enough space in the current Packet
to place the argument, then the Write function NewPacket()’s, increments to-
talPages and curPacket, updates the Size field of Packet number curPacket and
places the argument into the current Packet at position curByte. Lastly, the
function returns true. If Read Mode has been entered, the Write functions
return false, performing no operations whatsoever. In this way, the user can
simply Write out, in a linear fashion, the data they wish to send in the NetMes-
sage without being concerned with the allocation of Packets or how the Packets
will be reconstructed by the receiver.

NetMessage publicly encapsulates a complementary suite of Read functions
– Read1Byte(), Read2Byte(), Read4Byte(), and Read8Byte(). Each of these
functions take no arguments, and, if Read Mode has not yet been entered, puts
the NetMessage into Read Mode, zeroes out curPacket and sets curByte to the

22

first byte after the Packet header information. Next, assuming curByte is not
equal to the Size of the last Packet, these functions return a (void *) to the
object at curByte in Packet number curPacket, and updates the curByte value
(possibly reaching the end of the current Packet, in which case curByte is set
to the first byte after the header information and curPacket is incremented).
Attempts to read beyond the last byte of the last Packet cause all the Read
functions to return 0.

NetMessage provides the public method GetPacket(), which takes an integral
argument and returns a (void *) to the requested Packet, or 0 if the requested
Packet does not exist. GetNumPackets() returns the number of Packets in the
NetMessage. These methods allow the Networking module to send a NetMessage
off, Packet by Packet.

NetMessage provides the public function GetID(), which simply returns the
Packet ID of the first Packet in the NetMessage (after all, all Packets in a
NetMessage must have the same ID). SetID() takes an unsigned short argument,
and sets every Packet’s ID field to be equal to that argument. This allows the
creator of a NetMessage to set the ID of the NetMessage (ie SERVER UPDATE,
or FISH BITE) without worrying about the formatting of Packet header infor-
mation.

NetMessage provides the public method ConcatenatePacket(), takes a (void
*) argument, NewPacket()’s, and then memcpy()’s the data from the argument
to the new Packet.

NetMessage provides the public method DeallocatePackets(), which deal-
locates every (Packet *) in the map back to the boost::singleton pool. That
NetMessage object should thenceforth not be used.

NetMessage’s public constructor zeroes out curPacket, curByte, and total-
Pages.

NetMessage’s public destructor does NOT deallocate the (Packet *) in the
map. This allows relatively small NetMessage objects to be passed about with-
out copying the (potentially large) amount of data contained in the Packets, but
forces the Networking module, and any module that receives NetMessages (for
example, the Message Handler and Tank Simulator) to remember to NetMes-
sage::DeallocatePackets() after the NetMessage’s information has been read.

class NetMessage
{
private :

//map<Packet DocumentNum , Packet ∗>
// unsigned i n t curPacket
// unsigned i n t t o t a lPage s
// unsigned i n t curByte
// boo l readMode
// boos t : : s i n g l e t o n p o o l
//NewPacket ()

public :

23

//WriteNByte () //1 , 2 , 4 and 8 Bytes
//ReadNByte () //1 , 2 , 4 and 8 Bytes
//GetPacket ()
//GetNumPackets ()
//GetID ()
//SetID ()
//ConcatenatePacket ()
// Dea l l o ca t ePacke t s ()
//NetMessage
//˜NetMessage

} ;

Concerns
The NetMessage is far from an ideal object, as evidenced by the following con-
cerns. It is highly recommended anyone making direct use of the NetMessage
class read the following.

This class relies on the boost::singleton pool object, which the team has no
experience working with. If, for whatever reason, this object cannot be used,
a memory manager that provides similar functionality (fast, non-fragmenting
allocation of blocks of memory of a preset size) must be found or written.

NetMessage is intended to always be passed by value. This means that
failure to NetMessage::DeallocatePackets() will cause memory leaks. This is
unfortunate, especially for the modules that need to remember to, after reading
all of the information from a NetMessage, perform the deallocation.

NetMessage is fragile in the sense that a Read or Write operation can never
be taken back. Moreover, after a Read operation is enacted, attempts to perform
Write operations will fail, with no effect.

NetMessage provides a relatively wide interface to all objects that need to
use it. This is error-prone, as it is possible for objects who should simply pass
the NetMessage along to inadvertently alter its data. Bugs such as this would
be very difficult to detect.

4.2.9 Event

The Event simply encapsulates a NetMessage with the IP Address of the sender,
and the time at which the NetMessage was received.

Implementation
An Event privately encapsulates a static timer object – which allows it to times-
tamp itself in its constructor.

An Event consists of the IP Address of the sender, followed by the time the
Event was constructed, followed by the NetMessage itself. This data is public
for easy, low level access.

24

Event’s constructor accepts the IP Address of the sender and the NetMes-
sage (passed by value) that was sent. It timestamps itself after initializing its
members with the arguments passed.

class Event
{
private :

// s t a t i c t imer o b j e c t
public :

//IP Address o f the sender
//Time Event was cons t ruc t ed
//NetMessage
//Event ()

} ;

Concerns None

25

5 AI System

There are two functionally independent sections to the AI system. The first is
the decision making process for objects within the game called the AI module.
The second section is the genetic algorithm that governs the evolution of species
in the game. In addition there will be a governing class known as the Brain
Manager that encapsulates these two sections and provides other functionality
for managing the game AI.

The AI module involves the processing of information to decide upon a course
of action for a game object to take. These decisions will take the form of actions
from a list of possible actions such as MOVETO and BITE. The data comes
from other objects in the game object’s sensor range and memory AI as well as
internal, external and game states.

The genetic algorithm is the section that evolves the AI modules of future
game objects by using crossover and mutation techniques.

5.1 AI Module

The AI module has two separate subsections. The first is percept generation that
generates identifier-value pairs called attributes that are usable by the decision-
making process. This provides an interface between the decision-making pro-
cesses and the game world. The second section is decision-making that processes
the percepts generated by the percept generator and outputs a list of actions to
be interpreted by the game object.

The AI module will be applied to each object within sensor range of the
game object and an action will be produced for each object. These actions will
be evaluated and a configurable number of the most important actions will be
selected and sent to the game object to be interpreted. If there are no objects
within sensor range, the AI module will be run once and the actions generated
will be sent to the game object for interpretation.

The AI module will also query the fish to determine which actions have been
performed so it can notify the appropriate AI unit to save a training example.

26

5.1.1 Percept Generation

The percept generator is the interface between the game world and the decision-
making process. It contains a number of data filters that query objects within
the game to gather data. These data filters produce the attribute-value pairs
that are used by the decision-making process. Fitness functions will function in
the same way as data filters to evaluate the fitness of the fish.

The percept generator will reset the data filters at the end of processing and
notify the data filters at the end of each pass of the AI module.

Percept Generator Data The following outline lists data available. Note
that data is not limited to this list and additions may be made during implemen-
tation. Also note that if something is listed as an example it does not suggest
that it is part of the game. It is only there to illustrate a point.

• Objects in sensor range

– Determined through collision detection with the sensory volume.

– List of handles to objects are generated

– Examples

∗ Other Fish

• Internal state

– Physical attributes

∗ Data available through internal state variables
∗ Examples:

· Health
· Energy Level

– Statistical attributes

27

∗ Data available through statistics variables
∗ Examples

· Kill rate
· Being attacked rate

• External state

– Voxel attributes

∗ Data available by querying the terrain object
∗ Examples:

· Plankton density
· Current direction

– Special locations

∗ Collision detection with location objects
∗ List of handles to special location objects generated
∗ Examples:

· Location objects
· Havens

• Game state

– Data available by querying the game

– Examples:

∗ Score

Data Filters Data filters are objects that the percept generator maintains to
present data in a meaningful manner to the decision-making process. They do
this by generating attribute objects that are identifier-value pairs. Attributes
are used by the decision-making process to evaluate the game object’s situation
and determine actions for the game object to take.

Unless otherwise specified, data filters will only do their computations once
when they are first invoked. The result will be stored and made available if the
data filter is invoked again. After the AI module finishes processing, the data
filters will be reset to ensure that values are re-calculated the next time the AI
module is invoked. Some AI filters will require being reset with each pass of the
AI module. They may do this when the percept generator notifies them to do
so.

Some data filters may need to be trained. They will accomplish this by
querying the fish for information to create training examples and will be allowed
to train with the AI units. It may be decided to restrict the AI technique used
for memory AI to an AI type that can train as it goes (such as Bayes Classifiers)
in order to eliminate the need to have a dedicated training time.

One key feature of data filters is that they allow new methods of presenting
data to the decision-making module without having to change any other part

28

of the AI module. If new data sources are added to the percept generator, new
data filters can be included without old ones being changed. This prevents other
portions of the AI module from going out of date when such an update occurs.

Fitness Functions Fitness functions provide a means for AI units and Action
Decision Node’s to train by providing feedback to the various machine learning
techniques as to how they are doing. There are different types of fitness functions
for the AI units and the Action Decision Nodes.

For AI units, fitness functions should be written such that they consider a
single aspect of the game object to maximize such as energy level. For ADN’s
fitness functions are intended to represent higher goals. Some examples are
aggressiveness, social ability and longevity.

Fitness functions work in almost the same way as data filters. They evaluate
data available to the percept generator and produce an output based on this
data. The difference is that fitness functions output either a positive or negative
as well as a priority that is a real number in the range 0-1 intended to assign
an importance value to the action specified by an AI Unit. The AI technique
may choose whether to use the fitness, the response or both for training.

Special Note about Data Filters and Fitness Functions It is impossible
to design a general AI system that can account for every detail in a specific im-
plementation of the system. The data filters and fitness functions are intended
to provide a means for the programmers and designers of a specific implementa-
tion to tailor the system to their needs. This leaves the onus of responsibility of
breaking the world down to a form that can be interpreted by the AI system to
them. This can be accomplished through the creative construction of data fil-
ters and fitness functions since the other techniques employed by the AI system
are otherwise generic.

5.1.2 Decision Making

The decision-making module queries the percept generator for attributes that it
uses to evaluate the current situation of the game object. It then makes decisions
based on these attributes. It does this in two stages. The first is comprised of a
list of AI units that make decisions intended to optimize a specific aspect of the
game object. The second stage is a layer of specialized AI units called Action
Decision Nodes. Action Decision Nodes take outputs from the AI units and
choose one. They make their choices in an attempt to optimize higher goals
provided by fitness functions.

AI Units AI units are the base AI objects of the AI system. They take as
inputs attributes generated by the data filters in the percept generator and
produce an action that can be interpreted by a game object. Associated with
the action generated by an AI unit is a value that is intended to signify the
importance placed upon the AI unit’s decision.

29

The AI units employ one of several types of machine learning techniques.
These include but are not limited to Bayes Classifiers, Decision Trees and Back-
ward Propagation Neural Networks. These are trained from experience by gen-
erating training examples based on their inputs and a corresponding fitness
function. The fitness functions associated with AI units will correspond to spe-
cific aspects of the game object (e.g. energy level).

Upon initial creation, the data filters and fitness function used by the AI unit
are randomly chosen. This information along with the internal configuration
specific to the AI technique will be able to be saved to a file for future use.

Action Decision Nodes Action Decision Nodes (ADN’s) are a specialized
form of AI Unit that produces as an output any of its inputs. They take as
inputs the action-importance pairs generated by the AI Units.

There is one ADN for each type of independent action that an object can
make. For example, a fish may be able to move and eat but a barnacle may
only be able to eat, therefore the fish will have two ADN’s but the barnacle will
only have one. Likewise, the AI units connected associated with an ADN will
only be able to specify actions that fall under the category of action that the
ADN can specify.

ADN’s are evaluated by fitness functions in the same manner as AI units,
however the fitness functions associated with an ADN should reflect a higher
goal than a fitness function associated with an AI unit.

5.1.3 Genetic Algorithm

Genetic algorithms are a form of machine learning where a population of poten-
tial solutions to a problem is evaluated and evolved in order to produce more
fit solutions and eliminate less fit solutions. The result is a solution or a set of
solutions to a problem.

1. Initialize a population of hypotheses

2. Evaluate the hypothesis

3. Select the most fit hypotheses

(a) If a hypothesis provides a satisfactory solution to the problem, select
that hypothesis and stop.

4. Remove the least fit hypotheses

5. Generate a new generation of hypotheses to add to the population using
crossover techniques.

6. Add variance to the new population using mutation techniques

7. Repeat the process

30

5.2 Genetic Algorithm Module

Many of the steps involved with a genetic algorithm are taken care of as part
of the nature of the game. Initialization of a population of hypotheses occurs
when the initial AI modules are created for the initial population of fish. Fish
are removed by their inability to survive in the game environment. The game
will run as long as the user wishes to run it, so there is no end condition, thereby
allowing the user to evolve the system as long as they wish to do so.

The portion of the genetic algorithm that will require direct control from
the genetic algorithm module (GAM) is checking for “genetic” compatibility,
crossover, mutation and generation of new populations.

When a fish decides it is time to “mate” it will put itself on the GAM” ’s
mating list. The GAM will then evaluate the fish and try to find a match for
it from other fish on the mating list. If a match is found, it will then apply
crossover and mutation techniques to generate offspring from the two fish. If
no compatible match is found within a limited amount of time, the GAM will
then create offspring from the single parent using mutation.

Evaluation of Fish Fish will be evaluated based on their ability to meet
preset higher goals defined by the higher goal fitness functions used by the
Action Decision Nodes. Every higher goal fitness function will be applied to the
fish. The results of these will be compared to other fish in the mating list to
determine which other fish match up the best. If a compatible mate is found,
the two fish will be selected to reproduce.

Mutation Technique Mutation will simply involve the resetting of at least
one AI unit in the fish’s Decision-Making module.

Crossover Technique When two compatible fish are selected to mate, a
random number of AI units will be selected from one parent and copied into
the offspring. The difference will be copied from the other parent. Regardless
of what AI units were copied, the new offspring will have new Action Decision
Nodes.

5.3 Brain Manager

The brain manager will be the overarching class that will encapsulate the AI
system. It is responsible for the creation, deletion and management of AI mod-
ules. It will maintain a list of fish and their reaction times along with their
associated AI modules. Each game cycle it will determine which fish need to
“think” and invoke that fish’s AI module. It will then use the message handler
to deliver the decisions to that fish.

In addition to managing the fish thinking, the brain manager will manage the
genetic algorithm by calling the genetic algorithm’s generateOffspring method
and then managing a list of “fish to create” by sending “create fish” messages

31

to the tank. This is necessary since the tank may not always be ready to create
a new fish every time a new one is ready to be created.

The user will be able to add fish randomly to the tank. The brain manager
will handle this by keeping a count of the number of random fish to add. It
will query the tank for a body and assign a brain to the body. It will continue
to do this until the tank reports that no more bodies are available or until the
random fish count has reached zero.

The brain manager will also query the tank to determine which fish are dead.
If a fish is dead, its brain will be deleted and then the brain manager will send
a message to the tank to delete the fish.

5.4 Implementation Design

The implementation design is intended to provide an outline of the core func-
tionality of required classes and how they relate to each other. There will
undoubtedly be a need for helper functions, accessor functions and other mem-
bers, methods and operations that are assist the core design. These are implied
and not included so as not to distract the reader from the focus of this part of
the document.

5.4.1 Attribute

An attribute is a single piece of data. It consists of a type and a value. The AI
units will make decisions based on attributes.

Attribute class

Members:

• ID

– Identification of attribute

• value

– Number used by AI unit to classify attribute
– Used to create continuous valued attributes
– Can be used to create Boolean valued attributes by restricting

to 0 or 1

5.4.2 Actions

Actions are specified by the AI units and the Action Decision Nodes. They
consist of identifier-value pairs where the value is the importance/magnitude of
the action. They also contain an optional game object ID. This ID, if specified,
will be set to the currently evaluated game object by the AI module.

32

Action class derived from Attribute class

Additional Members:

• ObjectID

– ID of currently evaluated game object

• AIUnitID

– ID of AI unit whose action was selected

5.4.3 Fitness Functions

Fitness functions work similar to data filters. They are used by an AI Unit so
that the AI unit will know how well its doing. The fitness will be given as a
number between 0 and 1.

Fitness Function base class

Members:

• dataProcessed:

– Boolean flag
– Indicates that the data filter has already processed the data

• Fitness:

– Fitness generated by the fitness function

• Response:

– Boolean flag that tells the AI Unit whether it is doing good or
not

• Threshold:

– Value that determines at what level of fitness produces a positive
or negative response

• Priority:

– Value that determines what importance an associated action is

• ID:

– An id number used to identify the fitness function

• MessageHandler:

– Reference to the message handler
– Used to query the game for data

Methods:

• evaluateFitness:

– Virtual function to be overridden by derived classes

33

– Queries necessary data from the game
– Performs necessary calculations with the data
– Sets the fitness, priority and response
– Returns response

• getPriority:

– Returns the priority

• getFitness:

– Returns the fitness

• getResponse:

– Returns the response

• Clear:

– Clears the fitness
– Clears the priority

5.4.4 Percept Generator

The percept generator contains the data filters. A request is made for a type
of data by giving the percept generator a data filter ID. The data filter is then
used to generate an attribute and the results are passed on to the requestor.

Percept Generator base class

Members:

• dataFilters:

– List of data filters

• sensoryData:

– IDs to various game entities within the fish’s sensor range

Methods:

• requestData:

– Takes a Data Filter ID
– Returns an attribute generated by that data filter

• reset:

– Purges this rounds sensory data
– Calls each data filter’s reset method

• EndPass:

– Informs data filters that the current AI module pass has ended

34

5.4.5 AI Units

AI Units are the core decision-making modules in the AI system. They take
a list of attributes as input and produce a recommended action as an output.
This is done using different AI techniques that will be implemented in derived
classes.

AI Unit base class

Members:

• fitnessFunction:

– Used to determine the fitness of an AI unit

• attributeList:

– List of current attributes the AI Unit uses as input

• dataFilterIDs:

– List of data filter IDs used to request information from the per-
cept generator

• trainingExamples:

– List of training examples
– Limited size: FIFO overflow

• savedAttributeList:

– If action for this AI unit is chosen the attributes are saved
– Used to create a training example

Methods:

• determineAction:

– Virtual function to be overridden by derived classes
– Analyzes the attribute list and produces an Action
– Gets the priority from the fitness function

• getAttributeList:

– Calls upon the percept generator to generate a list of attributes

• Train:

– Override-able function used by the various AI techniques to train
– Trains the AI unit based on the trainingExamples list

• saveTrainingExample:

– Calls the fitness function to get the current fitness of the AI unit
– Saves the fitness along with the list of attributes from the saved

attribute list as a training example in the trainingExamples list

• saveAttributes:

35

– If the action from this AI unit is selected by the ADN this func-
tion will be called to save the attributes into the saved attribute
list

• saveExamplesToFile:

– Saves a set of training examples to a file
– For space considerations, this may be cut in future design cycles

• loadExamplesFromFile:

– Loads a set of training examples from a file
– If saveExamples is cut this will be cut as well

• Save:

– Saves the AI unit’s configuration to a file
– Saves the internal AI structure to a file. (e.g. neural network

configuration and weights)

• Load:

– Loads the AI unit’s configuration from a file
– Loads a saved AI structure from a file

5.4.6 Action Decision Nodes

Action decision nodes are a type of AI unit that take an action, chooses one of
them and returns it. Each action decision node will be associated with a type of
action that a game object is capable of that is independent with other actions.

Because action decision nodes are derived from AI units and actions are
derived from attributes, action decision nodes will be able to use the same type
of AI processing that is used by the AI units.

Action Decision Node class

Although ADN’s are functionally the same as AI units they will be a
separate derived class to provide type-safety as well as allow for changes
that may be necessary in the future.

5.4.7 AI Module

The AI module will bundle up the system. It will have a percept generator, a
list of AI Units, and a set of action decision nodes. It will take the data gathered
from the sensors and output actions for the game creature to take. The game
object will be responsible for implementing the actions, as it seems fit.

AI Module class

Members:

• Percept Generator

36

• AI Units:
– List of AI Units

• decisionNodes:
– List of decisionNodes

Methods:

• getSensorData
– Gets sensor data for the percept generator

• generateDecisions:
– Runs for each object in sensor range:

∗ Queries the fish for a list of actions completed
∗ If an action has been completed, it will tell that AI unit to

save a training example
∗ Calls each AI unit’s determineAction function
∗ Calls each action decision node’s determineAction function
∗ Generates a list of actions

– Returns list of actions
• getPerformedActions:

– Gets actions performed by the fish
– Determines which AI unit performed the action and tells that AI

unit to save a training example
• Create:

– Purges any AI Units and ADN’s currently in the AI module
– Creates AI Units
– Connects AI Units to Action Decision Nodes

• Train:
– Trains any AI units that are ready to do so

• Reset:
– Resets all AI Units
– Resets all Action Decision Nodes

• Save:
– Saves the AI module to a file

• Load:
– Loads the AI module from a file

• GetAIUnit:
– Gets a specified AI unit

• PutAIUnit:
– Puts a given AI unit into the AI module

• Mutate:
– Resets a random AI unit

37

5.4.8 Genetic Algorithm Module

The genetic algorithm module (GAM) will be a system wide component of the
AI system. When a fish is ready to mate it puts itself on the GAM’s mating
list. The GAM will then find a match for the fish and create offspring. If there
are no other eligible fish the GAM will produce offspring using mutation.

Members:

• Mating list:

– List of game objects and a time stamp

Methods:

• addToMatingList:

– Adds a game object to the mating list

• GenerateOffspring:

– Called by the game to generate off spring from the mating list
– Searches mating list for compatible mates
– Applies crossover or mutation to create offspring

• Crossover:

– Applies crossover techniques to two compatible game objects
– Determines whether or not to apply mutation to the offspring

• Mutation:

– Applies mutation techniques to a single game object to create
offspring

5.4.9 Brain Manager

The brain encapsulates the system and provides an access point for the rest of
the game to interface with the AI system. It will manage creation, deletion and
management of all AI modules.

Members:

• Brains:

– List of active AI modules in the system

• NewBrains:

– List of newborn brains waiting for a body

• GeneticAlgorithm:

– A genetic algorithm module

Methods:

• CreateFishBrain:

38

– Creates a brain given a brain configuration
– Tells tank to create a fish body

• SuppressBrain:

– Suppresses a brain given an object ID

• SuppressBrainWithAction:

– Suppresses a brain given an object ID and an actionID
– ActionID used to train AI unit

• AddToMatingList:

– Adds a given fish to the mating list

• CreateRandomFishBrain:

– Creates a brain for a fish with random hookups
– Tells tank to create a body

• Logic:

– Checks list to determine whether or not a fish is ready to think
– Activates the AI module for a fish ready to think
– Sends decisions out to fish that have thought
– Checks the dead fish list in the tank to determine which brains

to delete
– Deletes brains of fish that are dead and not on the mating list
– Inactivates brains of fish that are dead and on the mating list

• Breed:

– Plays match maker for fish on mating list
– Creates new brains for the fish
– Requests a body from the tank
– If no body is available, adds brain to NewBrains list until a body

is available

• Train:

– Allows AI modules to train

5.5 AI Techniques

The game will employ a number of machine learning techniques. These in-
clude Bayes classifiers, decision trees and backward propagation neural net-
works. These techniques are similar but have different strengths and weaknesses.
The AI system is flexible enough to allow other techniques as well as variations
of the techniques that are listed in the following sections.

39

5.5.1 Naive Bayes Classifiers

The Naive Bayes Classifier is based on Bayes theorem. It is a probabilistic
method of machine learning that does not require a search through the space of
possible hypothesis. Instead, decisions are made based on frequencies of occur-
rence in the training data. It has been found to have performance comparable
to neural networks or decision trees.

Note: This is a distillation of the material presented by Tom Mitchell in his
book “Machine Learning.” For a more detailed discussion of Bayesian learning
please refer to his book.

Bayes Theorem The underlying principle of the Bayesian Learning is Bayes
Theorem:

P (h/D) =
P (D/h)P (h)

P (D)

This is to say that the Probability (P) of a hypothesis (h) given the data (D)
is equal to the probability of the data given the hypothesis time the probability
of the hypothesis divided by the probability of the data.

Maximum A Posteriori (MAP) hypothesis The MAP hypothesis is the
most probable hypothesis (h) from some set of hypotheses H (h ∈ H). The
MAP hypothesis can be found using Bayes Theorem:

hMAP = arg maxP (h/D)

hMAP =
P (D/h)P (h)

P (D)
hMAP = P (D/h)P (h)

P (D) is dropped in the last term because it is a constant independent of h.
The above concepts are used in machine learning by considering D to be a

set of training examples and h as a target value or function from a set of possible
target values (H).

Naive Bayes Classifier From a set of training examples a Bayesian approach
to learning would be to determine the probability of each attribute based on
each potential outcome. Then when given a new instance to classify, use these
probabilities in conjunction with Bayes Theorem to classify the instance.

vMAP = arg maxP (vj |a1, a2, · · · , an)

From Bayes Theorem this can be rewritten as:

40

vMAP =
P (a1, a2, · · · , an|vj)P (vj)

P (a1, a2, · · · , an)
vMAP = P (a1, a2, · · · , an|vj)P (vj)

The Naive Bayes Classifier is based on assuming that the attributes are con-
ditionally independent given the target value (which is a very naive assumption).
This allows the probability of observing the conjunction of attributes to be the
product of the probabilities for each individual attribute.

P (a1, a2, · · · , an|vj) =
∏

i

P (ai|vj)

Substituting this into the previous equation we get the Naive Bayes Classi-
fier:

vNB = arg max
∏

i

P (ai|vj)

m-Estimate of Probability It should be noted that there are several ways
to calculate the probabilities used in the Naive Bayes Classifier. The simplest
method is the percentage of occurrences to the total number of instances for
a particular outcome. However, this method can cause problems when the
number of instances of an attribute is small relative to the whole. This is readily
apparent since the calculated target value involves a product of probabilities
and if just one of those were at or near zero it would cancel out all others. To
overcome this, Naive Bayes Classifiers often use the m-estimate of probabilities
as given here:

nc + mp

n + m

Where nc is the number of occurrences of a certain attribute given a cer-
tain outcome, n is the number of occurrences of that outcome, p is the prior
probability estimate and m is a constant known as the equivalent sample size.

The variables nc and n are easy to understand since the ratio nc

n is the simple
percentage previously mentioned. The variable p is the last known estimate of
the attribute. If there is no known last estimate, all values of an attribute can
be considered equally probable and p can be set to k−1 for k possible values
of an attribute. The variable m can be taken as the total number of possible
values for the attribute. It should be noted that if all priors (p) are considered
equally probable then the above equation simplifies to:

nc + 1
n + m

41

Algorithm for Training

• Given a list of training examples

– Determine the probabilities of each outcome

∗ Example: Predator = 0.20
∗ Example: Prey = 0.80

– Determine the probabilities of each attribute for each outcome

∗ Example:
· Sharp Teeth given Predator = .90
· Sharp Teeth given Prey = 0.10

∗ Example:
· Small Size given Predator = 0.30
· Small Size given Prey = 0.70

Algorithm for Decision Making

• For each attribute multiply the appropriate probability for each possible
outcome

– Example: Fish is small with sharp teeth

∗ Predator? = P (Predator)·P (sharp teeth|predator)·P (small|predator) =
0.20 · 0.90 · 0.30 = 0.054

∗ Prey? = P (Prey) · P (sharp teeth|prey) · P (small|prey) = 0.80 ·
0.10 · 0.70 = 0.056

∗ Choose Prey since 0.056 > 0.054

• Determine the conditional probability by normalizing the results

– Example:

∗ Probability that fish is prey is: 0.056/(0.054 + 0.056) = 0.51 =
51% chance that this fish is prey

– Assign this value as the attribute importance for the decision outcome

Example Given the following attributes:

Attributes Possible Values
Size (S)mall (M)edium (L)arge
Speed (S)low (A)verage (F)ast
Teeth (D)ull (A)verage (S)harp

Given the following training examples:

42

Example Size Speed Teeth Predator?
1 S F A N
2 M F S Y
3 S A A Y
4 L S D N
5 M A A N
6 M F D N
7 S S S N
8 L S A N
9 L A D N
10 S F A Y

Break the table into two tables for each outcome:

Predator = No Total examples = 7
Size Small = 2 Medium = 2 Large = 3
Speed Slow = 3 Average = 2 Fast = 2
Teeth Dull = 3 Average = 3 Sharp = 1

Predator = Yes Total examples = 3
Size Small = 2 Medium = 1 Large = 0
Speed Slow = 0 Average = 1 Fast = 2
Teeth Dull = 0 Average = 2 Sharp = 1

Determine the probabilities for each using the m-estimate:
Note because of the contrived nature of this example the m-estimate formula

will be nc+1
n+3 for each attribute. Not all attributes need to have the same number

of potential values so this could be different for each attribute type.

Predator = No Probability = 7+1
10+2 = .667

Size Small = 2+1
7+3 = .3 Medium = .3 Large = .4

Speed Slow = .4 Average = .3 Fast = .3
Teeth Dull = .4 Average = .4 Sharp = .2

Predator = Yes Probability = .333
Size Small = .5 Medium = .33 Large = .166
Speed Slow = .166 Average = .33 Fast = .5
Teeth Dull = .166 Average = .5 Sharp = .33

Now we can classify new instances such as the following:
Fish A: Small, Average, Sharp
Probability of “Not Predator”:

P (No)·P (Small|NO)·P (Average|NO)·P (Sharp|NO) = 0.667·0.3·0.3·0.2 = 0.0120

Probability of “Predator”:

P (Yes)·P (Small|Yes)·P (Average|Yes)·P (Sharp|Yes) = 0.33·0.5·0.33·0.33 = 0.0180

Choose “yes”. Calculate conditional probability: 0.018/(0.012 + 0.018) = 0.60

43

Therefore the naive bayes classifier would classify this fish as a predator and
assign the value of 0.6 to the return attribute (i.e. Predator with 60% certainty).
Fish B: Large, Fast, Average
Probability of “Not Predator”:

P (No)·P (Large|NO)·P (Fast|NO)·P (Average|NO) = 0.667·0.4·0.3·0.4 = 0.0320

Probability of “Predator”:

P (Yes)·P (Large|Yes)·P (Fast|Yes)·P (Average|Yes) = 0.33·0.166·0.5·0.5 = 0.0140

Choose “no”. Conditional probability = 0.032/(0.032 + 0.014) = 0.70
Therefore the naive bayes classifier would classify this fish as not a predator and
assign the value of 0.7 to the return attribute (i.e. Not a predator with 70%
certainty).

5.5.2 Implementation

The Bayes Classifier specific implementation details are as follows.
The Bayes Classifier privately encapsulates the total number of stored train-

ing examples, the total number of Choices that the BayesClassifier has available
to it, and a container of Choices.

class Bay e sC l a s s i f i e r
{
private :

unsigned int numTrainingExamples ;
unsigned int numChoices ;
Choice cho i c e [numChoices] ;

public :
B ay e sC l a s s i f i e r () ;

MakeDecision () ;
Train () ;

AddChoice () ;
RemoveChoice () ;
AddDataFilterKindInChoice () ;
RemoveDataFilterKindInChoice () ;
AddCategoryToDataFilterKindInChoice () ;
RemoveCategoryFromDataFilterKindInChoice () ;

} ;

MakeDecision (DataF i l t e r s) // curren t s i t u a t i o n
{

double cho i c eP robab i l i t y [numChoices] ;
for (int i =0; i < numChoices ; ++ i)
{

44

cho i c eP robab i l i t y [i] = (cho i c e [i] . GetNumOccurrencesOfChoice () + 1) /
(numTrainingExamples + numChoices) ;

for (int j =0; j < DataF i l t e r s .Num; ++ j) // every d a t a f i l t e r in s i t u a t i o n
{

cho i c eP robab i l i t y [i] ∗=
(cho i c e [i] . numOccurrenceOfAttribute (Da t a f i l t e r [j] . ID ,

DataF i l t e r [j] . va lue)
+ 1)

/ (cho i c e [i] . GetNumOccurrencesOfChoice () +
cho i c e [i] . GetNumCategoriesOfDataFilterKind (Da t a f i l t e r [j] . ID)) ;

}
}
cho i c e = MaxOfAll (c ho i c eP robab i l i t y) ;
c e r t a i n t y = cho i c eP robab i l i t y [cho i c e] / (SumOf(other cho i c eP robab i l i t y)) ;

return ;
}
Train (ChoiceID , At t r i bu t eL i s t)
{

++numTrainingExamples ;
cho i c e [ChoiceID] . IncrementOccurrenceOfChoice () ;
for (i =0; i < Att r i bu t eL i s t . s i z e (); ++ i)
{

cho i c e [ChoiceID] . IncrementOccurrenceOfAttr ibute (At t r i bu t eL i s t [i] . ID ,
At t r i bu t eL i s t [i] . va lue) ;

}
}

AddChoice() takes an ID (the ChoiceID – pass the ID of the Action this
Choice corresponds to), and a reference to a container of IDs (the IDs of some
DataFilterKinds – pass the IDs of the Attributes that are to be considered
for this Choice). It appends this choice to the container of Choices in the
BayesClassifier.

RemoveChoice() takes an ID (the ChoiceID – pass the ID of the Action this
Choice corresponds to). It removes the specified Choice from the BayesClassi-
fier. If the specified Choice is not found, a Nexception is thrown.

BayesClassifier::AddDataFilterKindInChoice() takes an ID (the ChoiceID –
pass the ID of the Action this Choice corresponds to), another ID (the DataFil-
terKindID – pass the ID of the Attribute the Choice is to start considering) and
a reference to a container of pairs (where the pair.first() is the lowerBound of a
given Category, and pair.second() is the upperBound of a given Category). It
forwards all arguments but the first to choice[ChoiceID].AddDataFilterKind().

Choice::AddDataFilterKind(), creates a new DataFilterKind with the speci-
fied ID and the specified Categories (one Category for each pair, where pair.first()
is the lower boundary and pair.second() is the upper boundary).

45

BayesClassifier::RemoveDataFilterKindInChoice() takes an ID (the Choi-
ceID – pass the ID of the Action that corresponds to the Choice that should
stop considering the specified DataFilterKind), and another ID (the DataFil-
terKindID – pass the ID of the Attribute the Choice is to stop considering). If
ChoiceID is not found, a Nexception is thrown. It forwards DataFilterKindID
to choice[ChoiceID].RemoveDataFilterKind().

Choice::RemoveDataFilterKind, removes the specified DataFilterKind. If
the specified DataFilterKindID is not found, a Nexception is thrown.

BayesClassifier::AddCategoryToDataFilterKindInChoice() takes an ID (the
ChoiceID – pass the ID of the Action the Choice that corresponds to), and an-
other ID (the DataFilterKindID – pass the ID of the Attribute that corresponds
to the DataFilterKind to add a Category to) and two floating point values – the
lower boundary and upper boundary, respectively, of the Category to be added.
It forwards every argument (except the first) to choice[ChoiceID].AddCategoryToDataFilterKind().

Choice::AddCategoryToDataFilterKind() forwards all but the first argument
to dataFilterKind[DataFilterKindID].AddCategory().

DataFilterKind::AddCategory() adds the specified Category to the container
category. It then calls DataFilterKind::Validate() to ensure that the DataFil-
terKind’s category container is still valid.

BayesClassifier::RemoveCategoryFromDataFilterKindInChoice() takes an ID
(the ChoiceID – pass the ID of the Action the Choice that corresponds to),
and another ID (the DataFilterKindID – pass the ID of the Attribute that
corresponds to the DataFilterKind to remove a Category from) and two float-
ing point values – the lower boundary and upper boundary, respectively, of
the Category to be removed. It forwards every argument (except the first) to
choice[ChoiceID].RemoveCategoryFromDataFilterKind().

Choice::RemoveCategoryFromDataFilterKind() forwards all but the first ar-
gument to dataFilterKind[DataFilterKindID].RemoveCategory().

DataFilterKind::RemoveCategory() removes the specified Category (that is,
the Category that matches the lower bound and upper bound arguments) from
the container category. It then calls DataFilterKind::Validate() to ensure that
the DataFilterKind’s category container is still valid.

Choice encapsulates an ID (which is equal to the corresponding ActionID),
the number of times this Choice has occurred in training examples, and a con-
tainer of DataFilterKinds, which enumerates every possible Data Filter the
Choice can be correlated with (in other words, if dataFilterKind contains only
elements with IDs corresponding to Size and Teeth, then the BayesClassifier
will only consider Size and Teeth when deciding whether or not to select this
Choice).

class Choice
{
private :

unsigned int ID ;
unsigned int numOccurrenceChoice ;
unsigned int numDataFilterKind ;

46

DataFi lterKind dataFi l t e rKind [numDataFilterKind] ;
public :

Choice () ;

GetID () ;
GetNumOccurrencesOfChoice () ;
GetNumCategoriesOfDataFilterKind () ;
IncrementOccurrenceOfChoice () ;
IncrementOccurrenceOfAttr ibute () ;

AddDataFilterKind () ;
RemoveDataFilterKind () ;
AddCategoryToDataFilterKind () ;
RemoveCategoryFromDataFilterKind () ;

} ;

GetID() takes no arguments. It returns ID.
GetNumOccurrencesOfChoice() takes no arguments. It returns numOccur-

renceChoice.
IncrementOccurrenceOfChoice() takes no arguments. It increments numOc-

currenceChoice.
IncrementOccurrenceOfAttribute() takes an (integral) DataFilterKindID and

a (floating point) DataFilterKind value. It then forwards the second argument
to dataFilter[DataFilterKindID].AddOccurrence(). If DataFilterKindID is not
found, a Nexception is thrown.

DataFilterKind::AddOccurrence() finds the category that the floating point
value falls into, and increments that category’s numOccurrences value. If the
floating point value is lower than the lowerBound of the category with the lowest
valued range or higher than the upperBound of the category with the highest
valued range, then the value is ”clamped” to the lowest valued category or the
highest valued category, respectively.

DataFilterKind encapsulates an ID (that is equal to the ID of the corre-
sponding Attribute (Teeth, for example)), and the Categories that this DataFil-
terKind’s floating point values have been broken into.

class DataFi lterKind
{
private :

unsigned int ID ;
unsigned int numCategories ;
Category category [numCategories] ;
Va l idate () ;

public :
DataFi lterKind () ;
GetID () ;
GetNumOccurrencesOfValue () ;
AddOccurrence () ;

47

AddCategory () ;
RemoveCategory () ;

} ;

GetID() takes no arguments and returns ID.
Validate() takes no arguments. It iterates over the container of Category’s,

and, if the Category’s do not constitute a continuous range of values (that is,
the first category’s upperBound is equal to the second category’s lowerBound,
for every pair of Categories save the first and last), it throws a Nexception.

Category encapusulates the lowerBound and upperBound of the range of
floating point values it encompasses, and the number of times this range of
values has been encountered in past training examples (that is, if this Category
resides in the ”Size” DataFilterKind, and that DataFilterKind resides in the
”Not Predator” choice, then numOccurrences is equal to the number of times
an object whose Size fell into the range defined by lowerBound and UpperBound
was classified as ”Not a Predator”).

struct Category
{

double lowerBound ;
double upperBound ;
unsigned int numOccurrences ;

Category () ;
} ;

5.5.3 Decision Trees

Decision trees are a method of machine learning that classifies a system based on
attributes of that system. The result is a tree structure that can be interpreted
as if-then rules. This technique has interesting applications to AI in games since
it can be used to generate AI code for game objects. Although Decision Trees
have been studied by a number of people, the most notable is J. Ross Quinlan
who developed ID3 and C4.5.

Limitations Decision trees rely on discrete valued inputs. There are meth-
ods for handling continuous valued inputs but these methods simply break the
continuous values into thresholds thereby “digitizing” them. Binary decision
trees are especially affected by this limitation and although there are methods
of creating n-tree decision trees, the algorithms become more complex.

Another limitation is the inability of decision trees to grow without scrap-
ping the old tree and generating a new one. There are methods which have
been studied to avoid this such as Utgoff’s ID5R. Due to our limited time and
manpower, these techniques will only be considered upon completion of other
team goals.

For a more detailed discussion of the limitations of decision trees please refer
to Quinlan’s book “C4.5 Programs for Machine Learning.”

48

Entropy Entropy is the measure of the purity of a set of data. The higher
the entropy the more impure is the data. The formula for entropy is as follows:

Entropy S = −p+ lg(p+)− p− lg(p−)

Where:

p+ = percentage of positive examples to the total
p− = percentage of the negative examples to the total

This equation gives numbers in the range of 0 to 1. If all attribute values are
either positive or negative, the entropy will be 0. This shows that the data is
very pure. If the attribute values are evenly split, the entropy will be 1.0 which
is the maximum impurity of the data.

Example Note: This example is taken from Machine Learning by Mitchell
p. 56. Suppose S is a collection of 14 examples of some boolean concept
including 9 positive and 5 negative examples. Then the entropy of S relative to
this boolean classification is:

Entropy(9+, 5−) = −(9/14) lg(9/14)− (5/14) lg(5/14) ≈ 0.940

Information Gain Information gain is a measurement of the reduction in
entropy of a system if a given attribute is chosen as a classification of the data.
Information gain for a given attribute is given by the following equation:

Gain(S, A) = Entropy =
∑

v∈Values(A)

Sv

S
Entropy(S)

Where:

Entropy(S) = overall entropy of the system
S = number of examples in the system

Sv = number of examples that have the value v in A

When building a tree, information gain is used to determine the attribute to
choose for each node. The attribute with the highest information gain is chosen
as the current node and all examples that match each value of an attribute are
used as the examples to build each subtree.

Example Note: This example is taken from Machine Learning by Mitchell
p. 56. From the previous example, consider an attribute called Wind with values
Weak and Strong. There were 8 examples with strong wind and 6 examples
with weak wind. From the days with strong wind there were 6 examples that
registered as positive with the target attribute and 2 that were negative applying

49

the entropy equation for these eight examples yields an entropy value of 0.811.
From the six days with weak wind there were 3 days with positive results and 3
days with negative results. From the entropy equation these six examples have
an entropy value of 1.0. The information gain for the wind attribute is thus:

Gain(S,Wind) = 0.940− (8/14)0.811− (6/14)1.00 = 0.048.

Decision Tree Algorithm For the purposes of this project we will be using
a binary decision tree with continuous attributes. Incorporating continuous at-
tributes is a necessity for this project and it will require the additional steps of
determining a threshold value. Keeping the tree binary will keep the implemen-
tation simpler than trying to develop an n-tree decision tree.

Building the Binary Decision Tree with Continuous Attributes
The following outline is a high level algorithm for building a decision tree with
continuous attributes.

• If all examples are positive with respect to the target attribute (fitness
function) then label the current node as positive and return.

• If all examples are negative with respect to the target attribute (fitness
function) then label the current node as negative and return.

• If there are no training examples then set the current node to a default
value and return

– Examples of things that can be done for a default

∗ Set the current node to the most common value of the target
∗ Choose positive for the right subtree and negative for the left

subtree
· For each threshold set
¦ Determine the entropy
¦ Count + and - examples
¦ Apply entropy formula

· Apply the gain formula
∗ Randomly set the final node

• Determine the Current node

• Determine the information gain for each attribute

– Determine the threshold value

∗ Average of where the set transitions from + to - or - to +
∗ Determine which threshold has the highest gain
∗ Return the threshold with the highest gain

50

– Return the gain of the highest threshold

• Choose the attribute with the highest gain as the current node

• Create the left subtee by calling “build tree” with a list of all training
examples that have a value of the current attribute below the threshold
for that attribute.

• Create the right subtree by calling “build tree” with a list of all training
examples that have a value of the current attribute above the threshold
for that attribute.

Traversing a Decision Tree The following outline is a high level descrip-
tion of how to traverse a binary decision tree with continuous attributes.

• If the current node is labeled as positive return a positive decision (likewise
for negative decision)

• Check the attribute from the current set of inputs versus the current node

– If it is less than the threshold, traverse the left subtree

– If it is greater than the threshold, traverse the right subtree

5.5.4 Backward Propagation Neural Networks

Neural networks are probably the most talked about form of machine learning.
The motivation behind the initial research on neural networks was based on
modelling the behavior of neurons from nature. As a result neural networks are
usually comprised of interconnected units that affect the other units that are
connected to them. Much work has been done on this form of machine learning
and there are many different flavors of neural networks. The type of neural
network described here is known as “Backward Propagation”.

Limitations Unlike Bayes classifiers and decision trees neural networks have
no problem dealing with either real or discrete valued inputs and producing real,
discrete or vector valued outputs. One limitation is that it is almost always
impossible for humans to be able to understand or interpret the target function
that the neural network produces. Another is that, although decision-making
tends to be quick, training can take more time than is acceptable for real time
learning. This may require that learning be done offline. However, the network
can be trained using a “learn as you go” approach.

Sigmoid Units A common form of neural network is based on a unit known
as a sigmoid unit. Sigmoid units essentially represent a linear equation with
each input weighted by a value that is adjusted during training. The output is
a differentiable non-linear function of its inputs. In this form of neural network,

51

sigmoid units are connected to form one or more layers to handle varying levels
of complexity of the data.

The sigmoid unit stores a set of weights that are applied to its inputs. Often
there is an initial weight (w0) that is not associated with an input value. This
is known as the bias since its affect on the outcome is constant regardless what
the inputs are. The weights are initialized to random values and then adjusted
through training.

The following represents sigmoid units:

o = σ(w0 · 1 + w1 · x1 + · · ·+ wn · xn) = σ(~w · ~x)

σ(y) =
1

1 + e−y

Where:
o = the output of the sigmoid unit
~w = the vector of weights associate with each input
~x = the vector of sigmoid unit inputs
σ = the squashing function

The squashing function is so named because it maps a large input domain
into the range of outputs between 0 and 1. As an alternative, tanh can be used.

Weight Training: Backward Propagation The weights used in the sig-
moid units are trained based on training examples. There are two instances
during which training can take place. One is to buffer training examples and
then use them to train the neural network by running through the training algo-
rithm making adjustments to the weights until the output of the neural network
is sufficiently accurate in meeting a target value. The other is to train the net-
work with each new instance provided that the output of the neural network
can be evaluated with each new instance via a fitness function.

Training of weights is achieved by propagating the errors made by the net-
work backward from the output to the hidden layers. The weights are adjusted
to account for the errors.

The output errors are calculated by the following:

δk ←− ok(1− ok)(tk − ok)

Where:
δk = the error term for output unit k
ok = the output from output unit k
tk = the target value for the output (e.g. output from a fitness function)

The errors are propagated back through the neural network using the following:

δi,j ←− oi,j(1− oi,j)
∑

k∈outputs

wi+1,j,kδi+1,k

Where:

52

δi,j = the error output from layer i, sigmoid unit j
δi+1,j = the error output from layer i + 1, sigmoid unit j

oi,j = the output from layer i, sigmoid unit j
wi+1,j,k = the weight associated with the output of sigmoid

unit i, layer j in sigmoid unit k from layer
i + 1

The weights are then updated using the following:

wi,j,k ←− wi,j,kηδi, jxi,j,k

Where:
wi,j,k = the kth weight from layer i, sigmoid unit j

η = the learning rate
δi,j = the jth sigmoid unit from layer i

xi,j,k = the kth input from layer i, sigmoid unit j
Note: the term ηδi,jxi,j,k is also referred to as ∆wi,j,k.

Creation of the Network The number of layers and sigmoid units per layer
are determined. This may be user configurable however. Once set these do
not change. The weights are then randomly set to small values (-0.5 to 0.5 are
typical).

Training If training examples are available, the network may be trained using
the training examples available until the network reaches an acceptable accuracy.

If training examples are not available or if it is desired to further train the
network through experience, the network can be trained with each instance that
it is given to classify provided that there exists a method of evaluation that can
be used as a target value.

Training is done using the backward propagation method described above.

Decision Making Single output decisions are made from comparing the out-
put of the final sigmoid unit with a threshold value. If the output is above the
threshold value the result is positive otherwise it is negative.

Multiple output decisions are made by taking the output with the highest
value as the decision.

5.6 References

Mitchell, Tom M. (1997). Machine Learning. Boston, MA: WCB/McGraw-Hill.
Quinlan, J. Ross (1993). C4.5 Programs for Machine Learning. San Mateo, CA:
Morgan Kaufman Publishers Inc.

53

6 Tank Simulator

The tank simulator is primarily responsible for organizing the interactions be-
tween the fish, objects, and plankton.

6.1 Definition of Terms

Tank simulator client – an accessor object that allows objects in the simulation
to interact with the tank simulator without allowing them to have a direct
reference to the tank simulator itself.

6.2 Primary Interfaces

• The tank simulator requires no special initialization.

• A time step function will be provided, which will increment the simulation.

• A fish insertion function will generate a new, unformatted, fish body at
(0,0,0); and may return an error value that will explain why the instanti-
ation process failed.

• A fish formatting function that will accept a Key and a reference to a
frozen fish; and may return an error value that signifies that the requested
fish body does not exist.

• A function that will return a frozen fish when given a corresponding Key.

• A fish deletion function that will accept a Key to a specific fish body that
will be removed from the simulation.

• Accessor functions to read and write to the mating list, add fish list, delete
fish list, and random fish creation counter.

• A large collection of functions that can be used to gather information
about objects in the simulation; each will be extremely granular in scope.

• The tank simulator will be capable of creating and processing both net-
work and file mementos.

6.3 Dependencies

• The physics simulator.

• The graphics module and its graphics clients.

• The math library classes.

• The standard C++ library.

54

6.4 Internal Details

• Each tank simulator client will allow objects in the simulation to:

– Deal damage to other objects in the simulation by passing in its Key
and a damage quantity.

– Place their Key on the mating list, which is periodically polled by
the brain manager and used to generate genetically altered fish.

– Place a frozen fish/brain pair onto an “add fish” list, which is pe-
riodically polled by the brain manager and used to generate precise
fish in specific locations in the aquarium.

– Place a Key onto a “delete fish” list, which is periodically polled by
the brain manager and used to remove corresponding fish brains and
bodies from the game.

– Increment a random fish spawn counter, which is periodically polled
by the brain manager and used to figure out how many new random
fish need to be added to the tank.

– Add any plankton quantity to a specific location in the tank.

– Suck an amount of plankton from the environment based on the
position, velocity, and suckability statistics of the fish that is sucking
up the plankton.

– Place fish on the “add fish” list by passing in a frozen fish/brain pair.

– The tank simulator will use an STL map to quickly retrieve references
to various objects when supplied with a Key.

– The tank simulator will store all fish in an STL list.

– The tank simulator will store all non-fish objects in an STL list.

– The tank simulator will store plankton using voxels, in other words,
a three dimensional array of floating point numbers.

– The tank simulator will contain a physics simulator object.

• The tank simulator will perform the following during a time step call:

– Set the game time step to a constant value if the global game state
is OFFLINE.

– Call logic and drawing functions on all objects.

– Run plankon density blurring algorithm.

– Call logic and drawing functions on all fish.

– Time step the physics simulator.

– The tank simulator will contain a mating list, which holds Keys to
fish waiting to mate.

– The tank simulator will contain an add fish list, which holds frozen
fish/brain pairs.

55

– The tank simulator will contain a delete fish list, which holds Keys
to fish.

– The tank simulator will contain a random fish creation counter, which
is an integer.

56

7 Interpretation Module (Fish Body)

During an AI Module’s (synonymous with “Fish Brain”) update period it will
generate a list of commands and send them to the Interpretation module (also
known as the “Fish Body”). It is then up to the body of the fish to translate
that data into specific behaviors and general movement of the fish. It does this
through the generation of potential fields.

7.1 Potential Fields

Potential Fields greatly simplify many tasks that the Interpretation Module
must execute. For one, it allows us to layer behavior onto the fish. Instead of
forcing the brain to only send one command per update to the body, we can
send it five and blend them together into very fluid action. Before we would
have sent “Attack” to the body and the body would blindly swim to its target
and get swallowed by a larger fish. Now, the body will receive an “Attack”
command along with a “Avoid Big Fish”, the fish now makes a circle around
the bigger fish and attacks its prey safely.

Potential fields work by assigning force vectors to everything that you wish
a moving fish to take into account. Since we want the fish to avoid terrain and
other objects we create a list of unit vectors pushing away from them. Each
vector is then scaled, the nearer we are to the object the higher weight it will
receive. Besides avoiding terrain, the AI Module tells us we want to avoid the
“Bigger” fish, so we add to the list another vector pointing away from that fish.
Next, the AI informed us that we should try to attack the smaller fish, again
we add another vector, only now it points towards the prey. Lastly, when the
AI sent us instructions it gave us a weight for each of them, we use that weight
to scale their resultant vector’s.

All of the vectors in the list are now added together. The result of that
summation is the direction we want the fish to go. As this process is continued
it produces very fluid movement with far less computational overhead then say
A*. Potential fields also allow players see fish that hesitate as they try to balance
eating desires with fleeing instincts. Potential fields are a win/win proposition.

7.2 Commands

Below is table of commands understood by the Interpretation Module. In no
way is it an exclusive listing, rather more a sampling of them. Unless otherwise
stated a command only effects the direction that fish will flow towards. Also
note that an object can be a fish, chum, marker, rock or any other physical item
that is in the tank.

57

Follow object. Follows an object. Will maintain a reasonable
distance to the object.

Go to object, point or Goes to an object, point or voxel. Gets as close
voxel as possible to it.
Flee object, point or Moves away from the indicated object, point or voxel.
voxel.
Attack object or Moves toward and attacks the specified object.
anything (mouth & fin). (Will accept an anything tag.)
Eat object or anything Moves toward and eats the specified object.
(mouth & fin). (Will accept an anything tag.)
Move forward. Tells the fish to move forward. May be useful

when the player has possession.
Stop (fin only) Ceases all fish movement. Will backward poison

other move commands.
Stop (mouth only) Ceases all mouth moves. Will backward poison

other move commands.
Evaluate Markers Orders a body to activate the potential fields of

nearby markers.
Drop Marker Orders a body to drop a marker at this location.
Roam Orders a fish to move to a random location.

When executing some commands, ie mouth commands like attack, there
may be a delay before that action can take place. For instance, we may require
a bite animation which will take half a second to finish. Naturally, a fish will
not deal its damage until that animation is complete. The brain may decide
to stop the attack midstream, in which no damage is dealt. To halt a partially
initiated action is to not that command on the next brain update. Naturally
if body is told to attack another fish and midstream is told to attack it again
it will recognize that the command is the same and will not restart the attack
animation.

Within our system commands are passed from the AI Module to the Inter-
pretation Module by the Message Passing System. The message passing system
does not have a direct connection with an Interpretation Module, so each com-
mand is handed first to the Tank Simulator which gives the message directly
to an Interpretation Module. This may seem a round-about technique but it
allows a more flexible design and makes networking simple.

Every system on a networked game contains a fish body for purposes of
client side prediction, however, there is only one brain for every fish. Therefore
it is necessary for all commands to be broadcast over the network to all other
computers. Since every fish body on every computer will receive the same input,
each fish will behave the same on all player’s screens. Since packet loss rate is
never zero, a server will still send out a server update for double insurance.

The documentation of commands in the Interpretation Module ends with
an outline of its implementation. Naturally this implementation is a highly
compacted struct designed for local and network travel. Below is a table of that

58

struct’s members.

Fish Body ID, Key or Handle Reference to the fish body who is
meant to receive this data.

Command ID An integer number that is unique
for each command.

Priority/Weight A floating point value used to
weight this command.

Object ID, Key or Handle A reference to the object related
to the specific command.

Timer (only used by Interp. Module). Time, in seconds, that we’ve been
performing this action. Not sent by brain.

7.3 Attributes, Stats and Other Maintained Data

Besides obeying commands from an AI Module, an Interpretation Module also
must maintain many other data members. Arguably the most important chunk
of data the Interpretation Module must retain are the Fish Attributes. Fish At-
tributes are detailed in the GDD and take up a full six pages. The Interpretation
Module is the Gate Keeper of these data members and will guard them jealously.
Any entity that wishes to change the Fish Attributes will ask the Interpretation
Module for a copy of them. Once an entity makes any needed changes to them
the Fish Attributes are sent to and accepted by the Interpretation Module.

In addition to the Fish Attributes, the Interpretation Module will need to
maintain a robust number of statistics on a given fish. Note that statistics in
the GDD were a representation of Fish Attributes to the Players, but in this
instance we are referencing to numerical values that keep track of the actions of
a fish. Statistics allow the Fitness Functions, AI Modules, and any other game
construct to make assumptions about this fish. The body tracks these members
and updates them as it detects their triggers. A list of some of these statistics
are presented for further enlightenment.

• Kill rate and count

• Voxels visited

• Average speed

• Distance traveled

• Offspring produced

• Offspring rate

• Chum eaten and rate

• Plankton eaten and rate

• Total food eaten

59

• Total food rate

• Attacked count and rate

• Attacking count and rate

• Picked up count and rate for each object.

• Dropped count and rate for each object.

• Carrying count and rate

The actual implementation of both Fish Attributes and Statistics will, ob-
viously, take the form of classes internal to the Interpretation Module. The
classes will have the standard constructs of protected members and accessor
functions. These classes will not be alone, besides Attributes and Statistics the
Interpretation Module will maintain other data useful for the Graphics, Sound
and Other Modules. Below is another table explaining some of the errata data
archived by the body.

60

Graphics Client Reference A mediator between the Graphics Class
and the fish.

Sound Client Reference A mediator between the Sound Class and
the fish.

Attacked Flag Simple flag to let the AI know we have
been attacked.

Attacker’s Stat Queue or Stack Stores the stats of all the fish that have
attacked this fish (learning process may
clear this)

Attacker’s Stat Queue or Stack Stores the stats of all the fish that this
fish has attacked (learning process may
clear this)

A previous set of Statistics Archives the statistics from the previous
brain update for the AI to compare.

Fish Voxel Calculated in reference to the fish’s position.
Fish Position Only modified by the Physics Simulator.
Current Direction(3D Vector) Current direction this fish is trying to go.
Current Acceleration Accel is the “Gas pedal” that the physics

uses to move the fish.
Actual Speed (3D Vector) A 3D vector that represents a fish’s speed

(set by physics system)
Fish’s ID, Key or Handle Needed so others know who we are in the

world.
Fish Brain’s ID, Key or Handle Lets the world know who thinks for us.
Key to the Phy. Sim. object Key to the shape that we represent in the

Phy. Simulator.
Euler angles of the fish Pitch and Yaw that this fish needs to be

translated by.
Command List List of all current commands. divided into

completed and pending.

7.4 Class List

Below is a basic list of classes used by the Interpretation Module to implement
its logic.

61

Aquarius::InterpModule Mother Class of the Interpretation Module.
Attribute Generator Class that creates Fish Attributes and makes

sure they are legal.
Fish Attribute Class that holds the data created by the Fish

Attribute Generator. Provides Std. interface
to data.

Statistic Class which maintains the statistical data of
the fish. Updated by other classes.

CmdInterp Each command that the brain could send has
a matching CmdInterp class. It performs any
logic for the command.

CmdInterp Client Provides the CmdInterp classes with a
standard interface into their mother
Aquarius::InterpModule.

62

8 Physics Simulator

The Physics Simulator is responsible for correctly simulating the interactions
between spheres, cylinders, boxes, and a single height map. Objects in the
simulation each have a unique identifier, known as a key, and can have such
statistics as position be altered through calls that only use the object’s key
to access it. The physics simulator will be capable of creating and processing
mementos, which would save the internal state of the simulation.

8.1 Definition of Terms

Client – An object which is using an interface of the physics simulator.
Impulse – Any physical interaction that exhibits forces so strong and sudden

that it can be approximated in a single frame, such as two
spheres bouncing off of each other.

8.2 Primary Interfaces

• The physics simulator requires no special initialization.

• A time step function will be provided, which will increment the simulation.

• A client may specify a rectangular boundary for all objects in the simula-
tion, there is no boundary by default.

• A reference to a single height map object may be passed in and used in
future simulation of object interactions.

• An object may be instantiated by passing in a Key that the new object
will use as label for itself until its destruction.

• An object may have any of its properties be modified by a client calling
an accessor function that accepts a Key and a vector or similar parameter
that will be used to alter the relevant object property.

• Clients will be able to instantiate and modify:

• spheres

• cylinders

• boxes

• A method to destroy any object when given a corresponding Key.

• Multiple force vectors and torque values may be applied to the same ob-
ject, along with an interface to clear acting forces.

• A gravity vector may be set.

• A water friction constant may be set.

63

• The physics simulator will be capable of creating and processing both
network and file mementos.

• Clients will be able to cast rays in simulation and receive information
about what objects they hit if any. What objects the ray would hit would
also be configurable, such as only colliding with the height map.

8.3 Dependencies

• The height map class.

• The vector and matrix classes.

• The standard math library.

8.4 Simulation Methods

The first simulation method to be implemented will be “fuzzy”, meaning that
no impulses will be possible. The basic concept is that the forces that attempt
to separate intersecting objects become exponentially stronger as the volume
of the intersection increases. A way of visualizing this system would be if one
were to have a pool table right before a break; one would see a set of pool balls
slightly sinking into the surface of the table. As the cue ball were to hit the
pool ball formation, each ball would intersect with its neighboring pool balls
until they would separate by slowly pushing each other away.

The second simulation method to be implemented will be “hard”, and in this
case will be an impulse based system; all possible collisions will be calculated,
and the earliest collision will be carried out and then another check will be
made for more interactions between objects in the simulation. This method,
when coded properly, would alleviate the problem of objects intersecting. This
method is fairly risky to implement, as objects can fail to collide and slip through
each other. An attempt will be made to properly implement this method before
the pre alpha deliverable, but there is no guarantee that this technique will be
completely bug free by that time. A way of visualizing this system would be
if one were to have a pool table right before a break; one would see a set of
pool balls sitting on top of the surface of the table. As the cue ball were to hit
the pool ball formation, each ball would not intersect with its neighboring pool
balls and they would all simultaneously split off in different directions like real
pool balls.

A possible third technique would be to combine the two techniques men-
tioned above, namely such that the “fuzzy” method could slowly correct any
mistakes made by the “hard” method. This technique would most certainly be
slower.

8.5 Internal Details

• The time step function will use the global scope “game time step” variable
in order to simulate at a constant rate. If the game time step is above

64

a certain threshold, say a tenth of a second, then it will be ignored and
the threshold value will be used in its place so that the physics simulation
may stay accurate.

• There will be a storage container for each object type, so as to speed up
the processing of many objects.

• An STL map will be used to augment the Key lookup process that occurs
when a client accesses an object in the simulation.

• When processing “fuzzy” physics, each frame will consist of using a single
quadratic pass on the objects to figure out what forces are acting upon
them that frame, and then running a single linear pass to apply the forces
and velocities for the frame.

• When processing “hard” physics, each frame will consist of using a single
quadratic pass on the objects that will compile a list of collisions that will
occur during the frame. The earliest collision is resolved first, moving the
involved objects involved to their proper locations immediately after the
collision, and then recomputed against the entire world for any additional
collisions; any positive results are put back onto the collision list after all
objects referred to by the collision list and recomputed against the entire
world. This process is repeated until the collision list is completely empty,
then a single linear pass is made that moves all objects to the extent of
their movement for the frame.

• Impulses will be calculated by performing intersection calculations that
will generate the time, normals, and exact position at which the two ob-
jects collide at. Each possible collision between different object types will
use a different function that specializes in finding the earliest collision
conditions; these functions will be available as protected members of the
physics module.

• Objects will be able to obey rules regarding inertia in order to allow them
to rotate in response to collisions.

• There will be voxels that contain lists of all objects whose centers of mass
are contained by that particular voxel, this will allow for optimizations for
any objects which are smaller than the predefined voxel size.

65

9 Height Map

The height map object stores a collection of vertex height values that are im-
plicitly arranged in a grid. Each square of the grid is also implicitly split into
two triangles that are divided along the positive diagonal, that is to say, the
vertex at [x][y] will always be connected to [x+1][y+1] by a triangle edge. Each
triangle can be indexed by its “lower vertex”, and an identifier for X major or
Y major; as an example, the triangle with lower vertex [x][y] and an X major
would be defined by the vertices [x][y], [x+1][y], and [x+1][y+1]. Unit normals
will be computed and stored for each triangle.

9.1 Definition of Terms

Lower vertex – the vertex of a triangle that has the smallest indices.
X major triangle – a triangle whose third vertex is obtained by incrementing

the x index of its lower vertex.
Y major triangle – a triangle whose third vertex is obtained by incrementing

the y index of its lower vertex.

9.2 Primary Interfaces

• Read the value of a vertex.

• Write the value of a vertex.

• Read the value of a triangle’s normal.

• A function that will cause the height map to render itself by using the
graphics module.

9.3 Graphical Aspect

• The aquarium’s terrain will be represented by a height map, which will
be detail textured to make it look more interesting.

• To distinguish between different heights, there will be multiple textures
blended together at different rates, depending on the slope of the height
map. To keep the height map from being too slow through texture changes,
all the textures will be contained within one bigger texture.

9.4 Dependencies

• The graphics module.

• The vector and matrix classes.

• The standard math library.

66

9.5 Internal Details

• A single texture will be stored.

• Three subtextures will be stored.

67

10 Graphics

All 3D graphics and Windowing will be done by the graphics engine. The
graphics engine will create a window and manage its message loop. The Window
handle (HWND in Windows) will be available for anyone who needs it, and a
message will be sent out every time any time the HWND changes, which should
only happen at most when the user changes between full screen and windowed
mode.

The 3D Graphics library will make heavy use of the linear algebra library
for viewport transformations. The library is coded for OpenGL, which makes
it inherit some of OGL’s restrictions such as:

• Textures’ dimensions must be powers of two. It is okay for the textures
to not be square.

• More then 8 lights are not allowed in the scene.

Not all of OpenGL’s designs are copied, for example the coordinate system
is right handed as this is more natural to most people. It will be pointed out
when there is a significant difference between the way OpenGL and the Graphics
engine do the same thing.

10.1 Graphics Clients

Most other modules will communicate to the Graphics module through a Graph-
ics Client. A graphics client contains all the information needed to render a
specific type of object such as a fish or a button. The client will be able to
animate the model between different frames, so if a piranha was biting a shark
causing the shark to die, the shark’s graphics client will cause it to turn belly
up.

A graphics client will request from the Driver the current viewable area of
the world so that it can cull itself in some fashion. All graphics clients should
be derived from the graphics client base class described below.

10.1.1 Interface

• Render (private)

– A virtual function to override. Render will be called by the Driver
when it has determined that it is the “best” time to render the object.

• SetRender

– A non-virtual function to override. SetRender should be called by the
holder of the client if they want the object to be drawn. SetRender
will decide if it should be rendered or not.

68

10.1.2 Implementation Details

Each graphics client needs to be able to know the current state of the object it
is to draw. Additional functions such as “SetFrame”, “Animate”, and “SetOri-
entation” are suggested to be added, even though they are not required.

10.1.3 Implementation Concerns

• While virtual functions are usually touted as having almost no overhead,
will this small amount be negligible?

10.2 Driver

The other main class that objects will communicate to is the Graphics Driver.
Most interaction to the Driver will be to request other objects (i.e. Models,
Textures) and to set basic rendering values (changing the fog color, the back-
ground color). While you can render both colored triangles and colored quads
through the driver, it is not recommended that you do so, as this bypasses the
interfaces set up, and takes away the possible speed advantages.

10.2.1 Interface

• Initialize

– Sets up the graphics engine so that it can create a window. Will
enumerate display modes.

• Destroy

– Cleans up everything the graphics module allocated

• CreateWindow(width,height,bpp,fullscreenflag)

– If fullscreenflag is set, changes the resolution to width x height x bpp.

– If fullscreenflag is not set, creates a window with client area width x
height.

– Does not change the resolution.

• Flush

– Renders all drawing set to be rendered.

– Also does any background processing the OS requires on the window.

• SetZBuffer(flag)

– If flag is true, enables using the Z-buffer for hidden surface removal.

– If flag is false, disables using the Z-buffer, so things get drawn using
painter’s algorithm.

69

• SetFog(flag, r,g,b)

– If flag is true, enables linear fogging to the color r,g,b.

– If flag is false, no fogging is created.

• SetBGColor(r,g,b)

– Sets the background color to r,g,b.

• SetView(position, lookat, up)

– Sets the viewing matrix to have the view plane centered at position,
be looking at the point lookat, with an assumed up vector of up.

• DrawTriangle(vertex1,vertex2,vertex3, r,g,b)

• DrawQuad(vertex1,vertex2,vertex3,vertex4 r,g,b)

• DrawQuad2d(vertex1,vertex2,vertex3,vertex4,r,g,b)

– Draws a triangle, quad, or 2d quad of the specified color.

• SaveScreenshot(filename)

– Saves a screenshot of the current frame of animation to the file spec-
ified.

10.2.2 Implementation Details

• Stores an array of linked lists (or an equivalent accessible interface) to
allow objects to be drawn sorted by texture type and drawing order.

10.2.3 Implementation Concerns

• Rendering order is not well defined between sprites and primitives explic-
itly drawn. Currently, it is expected that the drawing order will be as
follows:

1. Draw the Height Map

2. Draw the 3D objects

3. Draw the HUD (with Z-buffer disabled)

4. Draw the primitives (with Z-buffer disabled)

This may cause rendering irregularities, but changing this may cause the
primitives to z-fight with the HUD.

• Not separating the message pump from the flushing could cause Windows
to assume that the program is not responding.

70

10.3 Model

All static 3D models will be cached in an optimized form for drawing it. The
model will need to hold the vertices for each triangle, along with the texture
coordinates for each triangle.

10.3.1 Interface

• Draw(position,orientation,texture1)

• Draw(position,orientation,texture1,texture2)

– Draws the model immediately at the specified orientation, position,
with the specified textures.

10.3.2 Implementation Details

A Display List should be used to cache the model data.

10.3.3 Implementation Concerns

• Is there any easy way to add hierarchial models?

10.4 AnimatedModel

A problem with the Model class is that only static models can be stored. If any
animation is desired, the AnimatedModel class should be used. It extends the
functionality of the Model class with the following interface:

10.4.1 Interface

• Animate(timestep)

– Steps timestep units through the animation.

• SetNextFrame(frame)

– Sets frame as the next frame to interpolate to.

10.4.2 Implementation Details

Vertex linear interpolation is currently the expected method to change between
frames. Later, different interpolation techniques may be added.

10.4.3 Implementation Concerns

• Vertex linear interpolation may look really bad if not enough keyframes
exist.

71

10.5 Texture

One of the best ways to add detail to a 3d object is with textures, which is
supported in hardware by all modern video cards. While the Texture class does
not do much on its own, it serves as a storage device for the textures which
can be passed around. When a model specifies that it wants to be drawn with
TextureA and TextureB, it will pass Texture objects (not to be confused with
OGL texture objects), that hold the data needed to grab the correct texture.

10.5.1 Interface

• Constructor(filename, mipmapflag)

– Loads the file from filename into the texture.

– If mipmapflag is set to true, the the texture will be mipmapped,
otherwise the texture will not be mipmapped.

• LoadFrameBuffer

– Loads the data from the frame buffer into the texture. This is mainly
expected to be used for creating screenshots.

10.5.2 Implementation Details

OpenGL requires a texture to be a power of 2 in both width and height (64,
128, 256), but the texture does not have to be square. If the file specified does
not satisfy these requirements, then the final strip will be stretched out to allow
filtering and mipmapping to work best.

10.6 SubTexture

A slow operation in OpenGL is changing textures. This suggests a simple op-
timization – pack textures which are commonly used together into one bigger
texture. This way changing the current texture does not need to be done as
often. The SubTexture is an encapsulation of this optimization. It extends the
Texture class with the following functionality.

10.6.1 Interface

• Constructor(Texture, sLow, sHigh, tLow, tHigh)

– Creates a SubTexture out of texture with s coordinates ranging from
sLow to sHigh and t coordinates ranging from tLow to tHigh.

72

10.7 Font

When printing out characters, it is much easier to access printf style function-
ality instead of explicitly drawing quads with specific texture coordinates. The
Font class simplifies the writing of text to the screen by loading a font file and
providing a simple printf style function to display characters with.

10.7.1 Interface

• Constructor(file)

– Creates a font from the specified file

• Write(xPosition, yPosition, string, data, ...)

– Writes text at normalized screen coordinate (xPosition, yPosition) as
if printf was called:
printf (string , data , ...)

10.8 WideFont

WideFont is an extension of font that prints out wide character strings, to easily
allow multi-lingual support. The Write function is different in that it takes a
wide character string (wchar t[]) instead of a a normal string. Other than this
difference it is functionally the same.

10.9 Sprite

When drawing the HUD, it is unnecessary to specify a Z coordinate, as every-
thing is supposed to be floating in a 2D plane. A sprite has a texture which is
saved.

10.9.1 Interface

• Constructor(Texture)

– Set the texture for the sprite.

• SetRender(xPos,yPos,width,height rotAngle, r,g,b)

– Renders the sprite at the specified normalized screen cordinate posi-
tion.

– The rendering engine will choose an optimal time for rendering the
sprite.

73

10.10 Sprite3D

With particle effects becoming an extremely popular effect to add, a 3D sprite,
often called a “point sprite.” will be supported. It will act the same as the the
Sprite class, except that SetRender will take an additional zPos, which is how
far into the screen the Sprite3D will appear.

74

11 Sound

As shown in the above diagram the Sound class serves as a generalized
wrapper into the FMOD sound library. A casual glance at the hierarchy begs
the question, “Why have the extra two levels of abstraction? Why not scrap the
Sound and SoundSystem classes and allow client to direct access to Sound Fmod
class?” The battle cry of this game design is abstraction, modularization and
extendibility, this concept is fulfilled in the Sound Module design. By adding
two extra layers of abstraction it makes it trivial to add another sound library
choice for end users of the game.

75

The question then becomes, “Why two layers and not one?” Simply put
two layers were chosen because of future considerations. In the event that some
sound libraries may require special consideration in certain areas (ie loading,
initialization, etc.) the sound class is meant to act as the regulator between
the user and the SoundSystem class. Thus, if later on, another sound library
is added to the design of the system it should require almost no change to the
client code of the game.

11.1 Sound class

As mentioned previously, the Sound class is the outermost wrapper into the
inter-workings of whatever sound library the game chooses to use. It also handles
several key points for the SoundSystem class, initialization and listener/update
control. This frees a client of the Sound Module from worrying about specific
library initialization code and from filling out cumbersome parameters during
an update. Below is a detailed description of all interesting public methods. All
omitted methods are total wrappers around a SoundSystem method and are
completely documented in Sound.h.
Sound(SoundOutput type = FMOD);

• Default ctor for the Sound class. It forces the creator to choose the type
of sound library the client will use for the life of this object.

• Parameter is an enum instructing the Sound Class what type of sound li-
brary to work with. Currently only support FMOD. Overloaded to assume
FMOD.

• Will throw an exception if the type parameter is set to any value but
FMOD.

void Sound : : S e tL i s t en e r (GivePos ∗ pos , GivePos ∗ dirUp ,
GivePos ∗ dirForward) throw () ;

• Must be called at least once and provide the Sound class with the position
and direction of the listener. Must be called again if the listener ever
changes. 3D Sound will only work if BOTH are set.

• A GivePos is a class that allows the sound class to directly query an object.
Is detailed later.

• dirUp must point to an object that returns the upward facing vector of
an object, while dirForward returns forward facing vector.

• Caller may pass NULL to any value but they must fill them all before
sound output will work.

void Update(float elapsedTime) throw();

76

• Must be called once a frame so all 3D and streamed sounds can be updated.

• Parameter is the amount of time since the last time update was called (in
seconds). Must be true time, not game time or offline time.

bool Sound : : LoadSound (const char ∗ pathName , HSound & h ,
int loadOps) throw () ;

• Preloads a sound for the caller. If the sound is already loaded this call will
NOT fail. It reserves the right to either load another copy of the sound
or give the caller a reference to the already loaded copy.

• Second parameter is the var that will be filled with a handle to the sound.
Detailed later.

• Returns false if something goes wrong. Will NOT return false if the sound
is already loaded. Common failure would be that the max number of
sounds are already loaded. Another common fail is if the pathName is
longer then the def’d value of MAX SOUND FILE PATH NAME-1. Re-
turns true if all goes well.

– Load Options

SOUND 2D Force 2D treatment of this sound.
SOUND 3D Force 3D effects of this sound.
SOUND LARGE Suggest streaming to the internal class.
SOUND SMALL Force non-streaming to the internal class.
SOUND LOOP OFF Leave looping off for this sound.
SOUND LOOP ON Turn looping on for this sound.

11.2 HSound

Whenever a client loads a sound they are required to pass a reference to an
HSound. That HSound is filled with a handle to that particular sound. From
that point on if the client needs something done to that loaded sound, be it
playing or pausing, they must then pass that same HSound as a parameter.
The HSound must be retained by the caller since the Sound Module reserves
the right to add reference counting to the sound system in the future.

11.3 SoundSystem Class

The SoundSystem class lays down an outline of what all sound libraries must try
to conform to. Specific documentation on method behavior must be provided
by the derived class. Notice however that no set init function is required by the
soundSystem. Each class may design one that suites their sound library best.
Below follows a listing of all the methods in the SoundSystem class, all of which
are pure virtual and must be defined by children classes.

77

virtual bool LoadSound (const char ∗pathName , HSound &h ,
int loadOps) = 0 ;

virtual bool FindSound (const char ∗pathName ,
HSound &h) = 0 ;

virtual bool FreeSound (const HSound &h) = 0 ;
virtual bool Release (void) = 0 ;
virtual bool Update (UpdateData &up) = 0 ;
virtual bool PlaySound (HSound &h ,

bool StartPaused = fa l se) = 0 ;
virtual bool PlaySound (HSound &h , const GivePos &pos ,

bool StartPaused = fa l se) = 0 ;
virtual bool SetVolume (HSound &h , int volume) = 0 ;
virtual bool SetVolume (int volume) = 0 ;
virtual bool EndSound(HSound &h) = 0 ;
virtual int GetVolume (HSound &h) = 0 ;
virtual int GetVolume (void) = 0 ;
virtual bool Pause (HSound &h , bool SetPaused) = 0 ;

11.4 Sound Fmod Class

Currently, our system only supports FMOD sound output. The class that
links the Sound class with FMOD is Sound Fmod. It derives publicly from
the SoundSystem class and fills out all of its virtual methods. Below follows a
listing of all the public members in Sound Fmod class.
bool Init(const FmodOps ∗ops=NULL);

• Init method for Sound Fmod. Must be called for sounds to work.

• FmodOps is a struct will all fmod related initialization information. The
caller may pass NULL for this and the function will use default values.

• Will return false if fmod init functions fail or if channels are set to zero.

• Reserves the right to throw exceptions.

bool Release (void) throw ();

• Closes down the entire sound system and frees all the memory used by
the class.

bool LoadSound (const char ∗pathName, HSound &h, int loadOps) throw ();

• Preloads a sound for the caller VIA FMOD. If the sound is already loaded
this call will NOT fail. It will instead load another copy of the sound.

• PathName is the file name for the sound to be loaded. can NOT be larger
then MAX SOUND FILE PATH NAME - 1 else the method will return
false.

78

• second parameter will be loaded with a handle to the sound.

• See Sound::LoadSound method in sound.h for details on how to fill this
param out.

bool FindSound (const char ∗pathName, HSound &h) throw ();

• Attempts to find a copy of an already loaded sound.

• HSound will be loaded with a handle to the sound.

• Returns false if it couldn’t find the sound. Returns true if it did find the
sound.

bool FreeSound (const HSound &h) throw ();

• Frees a preloaded sound.

• Returns false if it couldn’t find the sound.

bool Update (UpdateData &up) throw ();

• Must be called once a frame so that the positions of all the 3D sounds in
the system.

• UpdateData is a struct with all data fmod needs to update the system.

bool PlaySound (HSound &h ,
bool StartPaused=fa l se) throw () ;

• Plays a given sound, forever if the sound was loaded to loop or just once
otherwise..

• Users can set last parameter to true if they want the sound to start up
paused. Defaulted to false.

• Returns false if the handle is invalid or something else goes wrong. Com-
mon failure would be that the max number of sounds are already playing.

bool PlaySound (HSound &h , const GivePos &pos ,
bool StartPaused=fa l se) throw () ;

• Plays a given 3D sound. 3D effects will not work if the sound wasn’t
loaded with the 3D options set. Beyond 3D effects, behaves just as
Sound Fmod::Play(HSound &, bool);

bool SetVolume (HSound &h, int volume) throw ();

• Alters the volume of the given sound relative to the global sound. It will
alter the volume of ALL active sounds with the given handle.

79

• Last param is a 0(silent) to 255(full on) value for the new volume.

int GetVolume (HSound &h) throw ();

• Returns the volume of the given sound. If there are multiple instances of
this sound will return the value of the first that is found.

• Returns the current volume of the given sound. Range will be 0(silent)
to 255(full on). If something goes wrong will follow fmod’s example and
returns 0 to the caller.

bool SetVolume (int volume) throw ();

• Alters the global volume.

• Volume values must be between 0(silent) and 255(full on).

int GetVolume (void) throw ();

• Returns the global volume.

• Returns the current global volume. Range will be 0(silent) to 255(full on).
If something goes wrong will follow fmod’s example and returns 0 to the
caller.

bool EndSound (HSound &h) throw ();

• Stops all instances of a sound from being played.

bool Pause (HSound &h, bool SetPaused) throw ();

• Sets the paused flag to either true or false.

• Returns false if the handle is invalid or something else goes wrong.

11.5 Sound Clients

The technique for interacting with the Sound Module is through a client. A
client can be individually tailored to control the sound logic for a specific object.
The Sound class itself does not implicitly provide these clients since each is very
specific for each object, yet they will be written by the same programmers. The
following table shows where our game will use Sound Clients and what each
client is responsible for.

Interpretation Module Client Landing Attack sounds, Eating sounds
Game Object Client 3D Sound nodes (bubbly and wave noises).
UI Module Client Affirmative click and Bad buzzer.

Background music.
Debug Client (optional) In the future may add debugging noises

for developers.

80

When a sound client polls its dependant it creates a GivePos class. A Give-
Pos class allows the Sound class to have random access to any positional data of
an active sound. GivePos classes are completely localized to the Sound Clients
and no other module will need give them any consideration.

Lastly, the following file types are supported by the Sound Module; .WAV(PCM
and Compressed), .MP2, .MP3, .OGG, .RAW, MIDI, .WMA(streaming only)
and .ASF(streaming only). In the future, any new sound library added to the
system must guarantee the support of .WAV(PCM) and .MP3.

81

12 Menu System

The menu system will consist of three primary classes that all other GUI ele-
ments can be derived from. These are the Screen class, the MenuItem class and
the Menu class. The GUI Handler object will handle these.

12.1 The UI Handler

The UI Handler will be the primary interface for all the GUI screens in the
game. It will create and own the different screens and switch between them
when directed to do so.

12.2 Public Interface

void Initialize ();

• Creates all GUI screens

void Logic();

• The UI will handle switching between screens based on input from the
player.

12.3 Screen Class

The Screen class is the class that defines the GUI of the current in-game screen.
It will contain all the menus for that screen, handle input from the player input
module, handle the focus and handle the mouse cursor.

Input Handling

When the screen receives input messages, it will first check if there is a menu
item with the focus. If so that menu item will receive the message. If not
then the screen will send mouse click messages to the menus and keyboard
messages to the key map. If there is a menu item with focus and that menu
item relinquishes the focus upon receipt of the message then the screen will send
the message to the menus as usual.

Focus

The screen will have a pointer to the menu item with the current focus. Since
each menu item has a handle to their screen they will be able to set themselves
as the current focus. Once a menu item has the focus it will receive all input
messages from the screen until it relinquishes focus. Once it has relinquished
focus the current input message is sent to the menus as usual.

82

Mouse Cursor

The screen will have a mouse cursor object. Mouse related messages will be
relayed to the mouse cursor. The position of the mouse cursor and not the
actual mouse will be relayed to the menus.

Key Map

The screen will have a key map object. This will be an invisible menu that
handles mouse messages and keyboard input when there is no other menu item
in focus. It will consist of invisible menu items that send messages to the message
handler when invoked.

Tool Tip

The screen will have a pointer to a tool tip. This will be cleared at the start of
the Screens process cycle. Menu items will be able to set the tool tip when they
get a mouse over message. The tool tip is drawn before the Mouse Cursor but
after all other GUI items.

Pull Down Menu

The screen will have a pointer to a Pull Down Menu. This is a special menu
that needs to be drawn before the tool tip but after all other GUI objects.

Communication to game

Each screen will read the status of its buttons and send relevant messages to
the game via the message handler.

12.3.1 Public Interface

void takeInput(InputMessage message);

• Used by the PlayerInput module to send input messages to the UI.

void SetFocus(MenuItem∗ item);

• Used to set a menu items focus.

void ClearFocus();

• Used to clear the Focus.

void SetToolTip(ToolTip∗ tip);

• Used to set the current Tool Tip.

void SetKeyMap(KeyMap∗ map);

• Used to set the current KeyMap object.

83

void SetPullDown(PullDownMenu∗ menu);

• Used to set the current pull down menu.

bool addMenu(Menu∗ menu);

• Used to add a menu to the Screen.

void draw()

• Causes screen to draw all menus

12.3.2 Public Class Definition

class Screen
{
public :

void takeInput (InputMessage message) ;
void SetFocus (MenuItem ∗ item) ;
void ClearFocus () ;
void SetToolTip (ToolTip ∗ t i p) ;
void SetKeyMap(KeyMap∗ map) ;
void SetPullDown (PullDownMenu ∗ menu) ;
void draw () ;

} ;

12.4 MenuItem Class

The MenuItem class will be the base GUI unit. All GUI elements will be derived
from this class.

Handle to Screen

Menu items will have a handle to the screen. Through this they may communi-
cate messages to their screen.

Handle to Menu

Menu items will have a handle to the menu they are on. This will allow them
to communicate up one level.

Input Handling

Menu Items will be able to receive GUI messages. They will handle messages
in their own way. If a menu item processes a message, it sets its update flag.

84

Tool Tip

Each menu will have two tool tips that they may use to display information
when they receive a mouse over message. These are the short tool tip and
the long tool tip. The short tool tip gives only basic information, usually just
identification, and is displayed when a mouse-over message is received. The long
tool tip gives more detailed usage information and is displayed after a period of
time has elapsed. When a mouse-over message is received the menu item can
set the current tool tip through its screen handle.

Dimensions, Captions and Bitmaps

Menu items will have height and width dimensions as well as a position point
that refers to the upper left hand corner of the menu item. They will also have
an optional bitmap and a caption that they may use for display purposes.

Drawing

The menu item will be responsible for drawing itself when its draw method is
invoked.

12.4.1 Public Interface

virtual void takeInput(InputMessage message);

• Takes UI message.

void setPositiont(x,y);

• Sets the position.

virtual void draw();

• Tells MenuItem to draw itself

12.4.2 Public Class Definition

class MenuItem
{
public :

virtual void takeInput (InputMessage message) ;
virtual void draw () ;
void s e tPo s i t i o n t (x , y) ;

} ;

12.5 Menus

Menus are a derived class from menu-items. The distinguishing features of
menus are that they have a list of menu-items. And that they pass messages
that they receive and do not handle on to their menu-items.

85

Input Handling

When a menu receives messages, it first checks to see if it can process the
message, if not the message is forwarded to its menu items. If the message is
a mouse click, the click is checked against each menu item until a collision is
found and then the click is forwarded to that menu-item.

Control of Menu Items

Menus will be able to set the positions of their menu items. This will allow
menus to scroll their menu items or drag them if the menu is dragged.

Drawing

When the menus draw method is invoked, it draws itself and then it calls the
draw method of all its menu items.

12.5.1 Public Interface

virtual void takeInput(InputMessage message);

• Takes UI message.

void setPositiont(x,y);

• Sets the position.

virtual void draw();

• Tells MenuItem to draw itself

12.5.2 Public Class Definition

class Menu : public MenuItem
{
public :

virtual void takeInput (InputMessage message) ;
virtual void draw () ;
void s e tPo s i t i o n t (x , y) ;

} ;

12.6 Mouse Cursor

The mouse cursor is a special GUI object that displays the mouse. The mouse
cursor will handle screen messages and be able to draw itself.

86

12.6.1 Public Interface

void setPosition(x,y);

• Sets the position of the cursor.

virtual void draw()

• Draws the mouse cursor.

12.6.2 Public Class Definition

class MouseCursor
{
public :

void s e tPo s i t i o n (x , y) ;
virtual void draw () ;

} ;

12.7 Key Map

The key map is a special UI object that maps game actions to keys. It is owned
by a screen that will send messages to it from the player input module when no
object is in focus. The key map will then translate these messages into game
messages.

12.7.1 Public Interface

virtual void takeInput(InputMessage message);

• Takes an input message

• Uses Message Handler to send game message

void mapKey(int keyID, int actionID);

• Takes a player input module key constant

• Takes a UI action ID.

• Allows a key to be mapped to an action.

• Defaults will be pre-mapped.

int getKeyID(int actionID)

• Gets the player input module key ID of the action specified by actionID

87

12.8 Derived GUI Objects

Text Box: Menu Item Text boxes are a menu item that display text.
Tool Tip: Text Box Tool Tips are a special designation of text boxes.
Edit Box: Text Box Edit boxes are text boxes that process keyboard input.

They do this by processing alphanumeric keyboard messages. These messages
are translated into characters that are stored in a string. The string is echoed
back to the screen. The input string is made available to a requestor.

Push Buttons: Menu Item Push buttons are menu items that process mouse
clicks.

Bar Graphs: Menu Item Bar graphs are menu items that read the currently
selected fish and display relevant statistics in bar graph form.

Check Boxes: Menu Item Check boxes are menu items that toggle either
checked or unchecked with mouse click messages.

Hierarchical Check Boxes: Menu A hierarchical check box is a check box
that is a menu of check boxes. If it is checked then all check boxes on the menu
are also checked.

Pull-Down Menu Bar: Menu Pull-down menu bars are menus that only
display their caption or bitmap until they are selected. When they are selected,
they register themselves with the screen so that they can display their full menu.

Slider bars: Menu Slider bars are menus that have a dummy menu item that
it uses to mark the current slider value. This value will be directly readable or
it can be sent to the game via the screens message handler reference.

Slider-Value Combo bar: Menu A slider-value combo bar is a menu that
contains a slider bar and an edit box. When the slider is adjusted, the slider-
value combo adjusts the text in the edit box. When the edit box is changed,
the slider-value combo bar adjusts the position of the dummy menu item on the
slider.

12.9 Console

The console is a special GUI object. It will be a screen with a menu that will
have a text box and an edit box. The text box will be used to display system
messages from the debugger module. The edit box will be used to send messages
to systems within the game. For example, the debugger has several options that
can be set using a string of commands. The commands that can be sent are up
to the system. The console object will simply read the string and dispatch it to
the appropriate system based on the dispatch command received. For example,
the string “\Debug +SND GFX” will send the string “+SND GFX” to the
debug module which will interpret that string as it sees fit.

Console commands are:

88

\Debug Dispatch remaining string to debugger
\AI Dispatch remaining string to AI system
\NET Dispatch remaining string to Networking
\GFX Dispatch remaining string to graphics module
\PHY Dispatch remaining string to physics module
\SND Dispatch remaining string to sound module
\MSG Dispatch remaining string to message handler
\GUI Dispatch remaining string to screen handler
‘ Toggle console display Not remappable

89

13 Threading

Threads are unavoidable for networked games, yet as the thread count increases
the risk of overly complex class hierarchy also rises. Complexity is definitely
something to avoid, so great care is taken to select logical places to introduce
threading. The three threads we have selected are isolated from the rest of the
game to avoid complications. This isolation is done by structuring threads to
inject data into the main thread rather then blindly changing variables in the
global program scope. Of course actual thread design is specific to each mod-
ule, however, each will use either the message passing system, module specific
queues, or general thread safety mechanisms (see mutexes) to insure isolated
threads.

13.1 Threading Locations

Excluding the main thread, the most obvious place to introduce a thread is of
course the networking. The AI will use the other thread for Learning/Training.
Training is an excruciatingly slow process which would certainly lag our game
if left on the main thread. The following table restates all game threads and
details their safety technique(s).

Networking thread Socket Listening, etc.
Module specific queue, mutexing.

AI thread Training/Learning.
Mutexing.

Main thread All other modules.
Mostly message passing, some mutexing.

13.2 Thread Implementation

For the actual implementation of threads we will use the Boost C++ extension
library. Boost is a freely available library for both private and commercial use
that is open source but NOT under the GPL. Besides being completely free,
Boost, and specifically the threading portion, is cross platform compliant and
simple to use. For specific information on Boost please go to www.boost.org.

Boost provides an effective wrapper for creating a thread. All a user need
do to spawn a thread is to create a Boost::thread object and pass it the address
of the function where the thread will start. The only down fall to Boost threads
are that they do not allow users to pass parameters to the starting function.
This is unacceptable for our purposes so we will create a ThreadGroup object as
a wrapper around Boost threads. It will provide threads with all the flexibility
of Boost while adding an initialization parameter should they need it. Below is
a list of all public methods of the ThreadGroup class .
bool AddThread(void((∗threadFunc)(void)), void ∗threadParam) throw();

• Adds a thread of execution to the system. Will only activate that thread
if the last parameter is set to true.

90

• First parameter is a pointer to a function that takes nothing and returns
nothing. This will be the point of initial execution.

• Second parameter is a void pointer to the data the user wants the thread
to receive.

bool RemoveThread(void((∗threadFunc)(void))) ;

• Effectively pulls the plug on a thread.

• Does not guarantee no throw. If an exception is thrown program should
immediately terminate.

• Will return false if thread is unknown.

• First parameter is a pointer to the point of initial execution aka the start-
ing function.

void Sleep(void((∗threadFunc)(void)), const boost::xtime& xt) throw();

• Sleeps a thread for a set amount of time.

• First parameter is a pointer to the point of initial execution aka the start-
ing function.

• For information on second parameter see documentation on boost::xtime
class at http://www.boost.org/libs/thread/doc/xtime.html

void Yield(void((∗threadFunc)(void))) throw();

• A passive sleep call. Sleeps the thread only if a sibling thread needs a time
slice.

• First parameter is a pointer to the point of initial execution aka the start-
ing function.

void ∗GiveParam(ThreadFunc threadFunc) throw();

• Returns to the caller the relevant parameter for this thread.

• First parameter is a pointer to the point of initial execution aka the start-
ing function.

For further help, here is a example of how to use the ThreadGroup class.

ThreadGroup g TG ;

void myThreadFunc (void)
{

MyDataType ∗ data = g TG . GiveParam(myThreadFunc) ;

while (1)

91

{
//do s t u f f
// . . .

// take a break
g TG . Yei ld (myThreadFunc) ;

}

return ;
}

int main (void)
{

// i n s a t i a t e the data and c rea t e the thread
MyDataType ∗ data = new MyDataType ;
g TG . AddThread (myThreadFunc , data , fa l se) ;

// s t a r t the thread
g TG . Join (myThreadFunc) ;

while (1)
{

//do some s t u f f
// . . .

}

//we ’ re done , time to c l ean up the game .
i f (! g TG . RemoveAllThreads ())

/∗ r e a l l y bad∗/ ;

return 0 ;
}

13.3 Thread Safety (Mutexing)

When using threads it is important to keep them synchronized to each other.
The simplest way to do this is to use mutexing. Windows mutexes can be com-
plicated to deal with, thankfully Boost’s thread library provides an exceptional
wrapper around them. Just like Boost threads these mutexes are just as simple
to use and are completely flexible. In fact they are so flexible that we will not
create a proprietary wrapper but rather directly use the Boost mutexing system.

Within the Boost library there are six types of mutexes. For our game we
will only concern ourselves with half of these mutexes. Specifically we will use

92

the recursive mutexes. Recursive mutexes are slightly slower but ensure tighter
control of our threads. Within this set of mutexes there are three different
flavors; plain mutex, try mutex and timed mutex. A plain mutex has no special
facilities, when you try to lock it the thread will block until you are able to lock
it. A try mutex will attempt to lock the thread, but if it is already in use it will
not block. The try mutex will instead fail to lock. Last but not least, a timed
mutex will try to lock for a user specified period of time before giving up and
failing to lock.

Locking a boost mutex is a very simple task. To lock a thread all one need
do is to create a locking object. The locking objects also comes in three flavors,
normal, try and timed. If you are trying to lock a timed mutex you may use
any of these objects. A try mutex cannot be locked with a timed lock, but it
still can use both normal and try locks. While the plain mutex can only use the
blocking normal lock. Unless a user created a normal locking object, a locking
object must be checked to see if it obtained the lock. As an added bonus with
Boost locking object a user is forced to implicitly unlock the object, a locking
object’s dtor automatically unlocks a mutex.

It is recommended to thread designers that they use recursive timed threads
for their implementations. Recursive timed mutexes allow the greatest flexibility
of locking without sacrificing size.

In the event that readers are confused at this point an example of thread
safety is provided for edification.

93

#include < iostream>
#include <boost / thread /xtime . hpp>
using namespace std ;

// inc l ude a l l the needed boos t thread headers .
#include <boost / thread /mutex . hpp>
#include <boost / thread / thread . hpp>
#include <boost / thread / recurs ive mutex . hpp>
using namespace boost ;

// crea t e an ins tance o f a l l boos t mutexes
recur s ive mutex recurMutex ;
r e cu r s i v e t ry mutex recurTryMutex ;
recurs ive t imed mutex recurTimeMutex ;

void BlockingTest (void)
{

// t h i s c a l l w i l l b l o c k u n t i l somebody e l s e l e t s go o f
// the mutex .
// no t i c e t ha t the timed mutex i s used to c r ea t e t h i s
// b lock ingLock .
recur s ive t imed mutex : : s coped lock

blockingLock (recurTimeMutex) ;

cout << ” BlockingTest thread f i n a l l y locked the thread . ”
<< endl ;

cout << ” BlockingTest unlocks the thread in blockingLock ”
<< ” dtor . ” << endl ;

}

void TryTest (void)
{

recur s ive t imed mutex : : s c op ed t r y l o c k
tryLock (recurTimeMutex) ;

// check to see i f we go t the l o c k
i f (tryLock . locked ())

cout << ” TryTest SUCCEEDED in l o ck ing the mutex”
<< endl ;

else
cout << ” TryTest FAILED in l o ck ing the mutex , ”

<< ” somebody a l ready has i t . ” << endl ;
}

94

void TimedTest (void)
{

// see www. boos t . org / l i b s / thread /doc/ xtime . html f o r doc on xtime
xtime xt ;
xt ime get (&xt , boost : : TIME UTC) ;
xt . s e c += 2; // s e t wai t f o r 2 seconds

recur s ive t imed mutex : : s coped t imed lock
timedLock (recurTimeMutex , xt) ;

i f (timedLock . locked ())
cout << ” TimedTest SUCCEEDED in l o ck ing the mutex”

<< endl ;
else

cout << ” TimedTest FAILED in l o ck ing the mutex , ”
<< ”somebody a l ready has i t . ” << endl ;

}

int main (void)
{

cout << ”Main thread l o ck s the mutex . ” << endl ;
r ecur s ive t imed mutex : : s coped lock

mainLock (recurTimeMutex) ;

// check to see i f we go t the l o c k
i f (mainLock . locked ())

cout << ” Main SUCCEEDED in l o ck ing the mutex”
<< endl ;

else
cout << ” Main FAILED in l o ck ing the mutex”

<< endl ;

cout << ”Create the BlockingThread and TimedTest ”
<< ” threads . ”
<< endl ;

thread BlockingTestThread(&BlockingTest) ;
thread TimedTestThread(&TimedTest) ;

cout << ”Create the TryTest thread , i t ’ l l a l s o t ry to ”
<< ” lock the mutex . ”
<< endl ;

thread TryTestThread(&TryTest) ;

cout << ”Main unlocks the mutex and s l e e p s f o r 1 sec . ”
<< endl ;

95

mainLock . unlock () ;
// c a l l s l e e p . . .

return 0 ;
}

Program Output:

Main thread locks the mutex.
Main SUCCEEDED in locking the mutex

Create the BlockingThread and TimedTest threads.
Create the TryTest thread, it’ll also try to lock the mutex.

TryTest FAILED in locking the mutex, somebody already has it.
Main unlocks the mutex and sleeps for 1 sec.

BlockingTest thread finally locked the thread.
BlockingTest unlocks the thread in blockingLock dtor.
TimedTest SUCCEEDED in locking the mutex.

14 Debug Module

The debug module will be a singleton that encapsulates a number of functions
for tracking messages embedded in the code. The debugger will buffer messages
and output them either at the end of each loop or when it reaches its buffer
capacity. This functionality is as follows:

• Logging

– Uses a file to log messages

• Console Output

– Uses displays messages to an in-game console used to display debug
messages.

• Standard output

– Sends messages to standard output

The debugger will implement different levels of information. A higher debug
level means that the message is more significant. Some guidelines to follow are
given below.

• Level 1: Any message.

– Often these messages are just to show that the program is progressing
as desired.

• Level 2: Uncommon messages.

96

+ toggles on
- toggles off
L1 level 1 messages
L2 level 2 messages
L3 level 3 messages
L4 level 4 messages
LALL All levels
AI AI system messages
NET Networking messages
GFX graphics module messages
PHY physics module messages
SND sound module messages
MSG message handler debug messages
ALL all systems
DISPLAY Toggle messages while preserving configuration
\LOG direct commands to logger
STANDARD (Console Messages only) directs to standard output
SCREEN (Console Messages only) directs to in-game console

Figure 1: Debugger Command Summary

– Messages that the programmer wants to look out for but may not
happen every loop.

• Level 3: Rare messages.

– Messages that the programmer does not expect to see or that the
programmer wants to have special significance.

• Level 4: Unique messages

– Level 4 should be reserved for very special messages.

In addition to specifying a level, the programmer can specify what modules
they receive messages from. ID’s will be available for each module. The level and
module ID identifiers will allow the programmer to target what messages they
are receiving. Messages will also be able to be turned off or on while preserving
the output configuration. Commands for the debugger are by default for the
non-log messages. The “\LOG” command will direct all following commands
to the debug logger.

Debugger commands will be input via a string that the debugger will parse
out. The string will be set via the in-game console or an input file. Note that
the input file will be read once at the start of the program. Figure 1 is a list of
debugger commands.

97

An example of how this would work is as follows:

“+L1 +L4 +AI +SND -MSG”

This would turn on level 1 and level 4 messages for the AI and sound modules
while turning off messages for the message handler.

14.1 Public Interface

• void setOptions(const char* options)

– parses the options string and sets debug options appropriately.

• int startLogFile(char* filename, bool append = false)

– Prepares filename for use with the debug module

∗ If filename does not exist, it creates it.
∗ If append is not set to true, it will overwrite the currently existing

file.

– Returns an ID that may be used to access the file during log requests
to prevent the need for string compares.

• void log(int fileID, int systemID, int Level, const char* message, ...)

– Writes message to file with ID of fileID.

– variable arguments will work similar to printf.

– level and system used by debugger to filter messages

• void log(const char* filename,int systemID, int Level, const char* message,
...)

– Works in the same manner as above but performs a string compare
to determine which log file to use.

• void output(int systemID, int Level, const char* message, ...)

– Works likes the log function except sends output to the current out-
put location (console or standard out)specified from the options set.

14.2 Public Class Definition

class Debugger
{
public :

void setOpt ions (const char ∗ opt ions) ;
int s t a r tLogF i l e (char ∗ f i l ename , bool append = fa l se) ;
void l og (int f i l e ID , int systemID , int Level ,

98

const char ∗ message , . . .) ;
void l og (const char ∗ f i l ename , int systemID , int Level ,

const char ∗ message , . . .) ;
void output (int systemID , int Level , const char ∗ message ,

. . .) ;
} ;

15 File Management

When saving files, it is preferable to have a common set of functions that allow
saving and loading of arbitrary files while still preserving encapsulation of the
data being saved and loaded. The File Memento will preserve encapsulation
while still allowing the UI to choose where to save the file.

15.1 Classes

The File Memento is a virtual base class that provides the ability to be written
to a std :: ostream and read from a std :: istream. This class is should be used
solely to inherit an interface. The File Memento is not the same as the
Networking Memento!

FileMemento Stores the state of an object so it can be written to a file.
Also is able to be created from a istream.

15.2 Dependencies

The FileMemento will be dependent on the C++ standard library’s IO stream
functionality in addition to being dependent on the UI to interpret it correctly.

15.3 Interfaces

class FileMemento
{
protected :

FileMemento (std : : i s t ream &) {}
public :

//FileMemento (. . .) ;
virtual ˜ FileMemento (void) {}

virtual Write (std : : ostream &) const = 0;
Read(std : : i s t ream &) = 0;

} ;

15.4 Functions

Four functions are provided by the interface FileMemento. All of these are
expected to be overridden in a base class. Also, it is expected that another

99

constructer will be created that can fully construct the memento from data.
Do not define a default constructor

FileMemento::FileMemento(std::istream&)
Creates a file memento from the specified stream. The memento will now have
a state to be passed through the Message Handler to the specified module. The
stream will be updated to have read past the data. This will normally be used
for initializing a memento from the data in a file.

FileMemento::FileMemento(...)
This function does not exist in the FileMemento class. This function will be
different for each derived object; its purpose is to create a memento out of
currently available data in RAM.

For example, a FishMemento would most likely take a pointer to a Fish ob-
ject, allowing the memento to extract all data from the Fish into the Memento.

FileMemento::˜FileMemento(void)
Does nothing. This is a virtual function for overriding.

FileMemento::Write(std::ostream&)
Writes out the data contained in the FileMemento to the stream. This will
normally be used for writting data to a file.

FileMemento::Read(std::istream&)
Reads in the data contained in the stream to the FileMemento. This will nor-
mally be used for reading data from a file.

16 Input module

The player input module will provide status of input devices used by project
Aquarius. This information will be made available to the user interface. Direct-
Input will be used however the Input class will encapsulate its functionality.

The input module will first get the current state of all the input devices. It
will then update values that have persistent components such as mouse delta
positions.

16.1 Public Interface

• bool GetUserInput()

– This method is invoked once per frame to update the state of the
input devices. It returns success or failure.

• bool IsPressed(Input Constant)

100

– Returns whether a key or mouse button has pressed. If GetUserIn-
put() fails this will return false.

• bool IsTriggered(Input Constant)

– Returns whether a key or mouse button has been triggered. If Ge-
tUserInput() fails this will return false.

• char GetLastCharacter()

– Returns the alphanumeric character pressed during the last update.
If no character was pressed this function returns 0.

• float MouseX()

– Returns the current x position of the mouse.

• float MouseY()

– Returns the current y position of the mouse.

• float MouseDeltaX()

– Returns the change in the mouse’s x position.

• float MouseDeltaY()

– Returns the change in the mouse’s y position.

• float MouseDeltaWheel()

– Returns the change in the mouse wheel.

16.2 Public Class Declaration

class PlayerInput
{

bool GetUserInput () ;
bool I sPre s s ed (Input Constant) ;
bool I sTr i gge r ed (Input Constant) ;
char GetLastCharacter () ;
f loat MouseX () ;
f loat MouseY () ;
f loat MouseDeltaX () ;
f loat MouseDeltaY () ;
f loat MouseDeltaWheel () ;

} ;

101

16.3 Input Constants

The input constants will be remapped DirectInput Constants. Project Aquarius
will not support Japanese Keyboards and thus those constants will be removed.
In addition three constants have been added for the purpose of checking mouse
clicks.

Key constants from DirectInput will be redefined to allow the mouse buttons
to be treated the same as keyboard buttons. All constants will use the prefix
DIK , with the same suffix as in DirectInput. For example, the constant to refer
to the Num Lock is KEY NUMLOCK. The three mouse buttons will have the
following constants:

Constant Notes
KEY LBUTTON Left Mouse Button
KEY RBUTTON Right Mouse Button
KEY WHEEL Mouse Wheel press

17 Timer

Modules that need support for time keeping will use the timer object. It will
provide functionality for checking the frame rate, time step and game time step.
The game time will be a modified time step that the user will be able to adjust
to speed up or slow down the speed of the game. It will have an upper and
lower limit to prevent the game time being set to an unmanageable rate.

17.1 Members

• Time Sample

– Amount of time over which to average the frame rate

• Average Frame rate

– Average of last Time Sample amount of seconds

• Actual frame rate

– frame rate since last frame

• Real time

– Time step

– Time since last frame

• Game time

– Modifiable time step

– Can set to constant for offline mode

102

• Game Speed

– Modifier for game time

– Limited maximum and minimum speed

17.2 Methods

• setTimeSample

– Sets the time sample

• getAverageFrameRate

– returns the averageFrameRate

• getActualFrameRate

– returns the actual frame rate

• getRealTimeStep

– returns the real time step

• getGameTimeStep

– returns the game time step

• setGameSpeed

– sets the game speed

• getGameSpeed

– returns the game speed

17.3 Public Class Declaration

class Timing
{
public :

void setTimeSample () ;
f loat getAverageFrameRate () ;
f loat getActualFrameRate () ;
f loat getRealTimeStep () ;
f loat getGameTimeStep () ;
void setGameSpeed () ;
void getGameSpeed () ;

} ;

103

18 Math

Basic linear algebra functionality is needed by multiple modules. This library
will support basic linear algebra constructs, namely matrices and vectors and
the ability to manipulate them. This functionality will be contained within the
namespace “math”.

18.1 Classes

The math library consists of the following classes. Note that each type is tem-
plated to allow use of different floating point types.

Matrix2<type> Square Matrices of multiple sizes
Matrix3<type>
Matrix4<type>
Vector2<type> Vectors of multiple sizes
Vector3<type>
Vector4<type>

18.2 Dependencies

The math library will be dependent on only the C++ Standard Library.

18.3 Interfaces

Each matrix class and vector class will have the same functionality, With the
exception of the amount of elements it can access. Because of this, a Matrix2
and Vector2 will be the classes described, but the same basic interface will be
supported by Matrix3 and Vector3.

18.3.1 Matrix2

template<typename type>
class Matrix2
{
public :

// Construc tors
Matrix2 (type row1col1 , type row1col2 ,

type row2col1 , type row2col2) throw () ;
Matrix2 (type ∗ MatrixData) throw () ;
Matrix2 (const Matrix2<type >&) throw () ;
Matrix2& operator= (const Matrix2<type >&) throw () ;
bool operator==(const Vector2<type <&) throw () ;

// Ari thmet ic opera t i ons
Matrix2& operator+= (const Matrix2<type >&) throw () ;

104

Matrix2& operator−= (const Matrix2<type >&) throw () ;
Matrix2& operator∗= (const Matrix2<type >&) throw () ;
Matrix2& operator∗= (type) throw () ;

//Accessors
//Note : opera tor [] [] does not e x i s t , but i t w i l l
// appear to .
const type& operator [] [] (s i z e t ype , s i z e t y p e)

const throw () ;
type& operator [] [] (s i z e t ype , s i z e t y p e)

throw () ;
const type ∗ Data (void)

const throw () ;

// Spec i a l opera t i ons
type Det (void) const throw () ;

// S e l f modi fy ing opera t i ons
Matrix2& Transpose (void) throw () ;
Matrix2& Inve r t (void) ;

} ;

18.3.2 Vector2

class Vector2
{
public :

// Construc tors
Vector2 (type element1 , type element2) throw () ;
Vector2 (type ∗ VectorData) throw () ;
Vector2 (const Vector2<type >&) throw () ;
Vector2& operator= (const Vector2<type >&) throw () ;
bool operator==(const Vector2<type <&) throw () ;

// Ari thmet ic opera t i ons
Vector2 operator+= (const Vector2<type >&) throw () ;
Vector2 operator−= (const Vector2<type >&) throw () ;
Vector2 operator∗= (const Vector2<type >&) throw () ;

//Accessors
const type& operator [] (s i z e t y p e) const throw () ;
type& operator [] (s i z e t y p e) throw () ;
const type ∗ Data (void) ; const throw () ;

// Spec i a l opera t i ons
type Magnitude (void) const throw () ;

105

// S e l f modi fy ing opera t i ons
Vector2& Normalize (void) ;

} ;

18.3.3 Shared Functions

//Matrix opera t i ons
Matrix2 operator+ (const Matrix2<type>&,

const Matrix2<type >&) throw () ;
Matrix2 operator− (const Matrix2<type>&,

const Matrix2<type >&) throw () ;
Matrix2 operator ∗ (const Matrix2<type>&,

const Matrix2<type >&) throw () ;
Matrix2 operator ∗ (type) throw () ;
//Vector opera t i ons
Vector2 operator+ (const Vector2<type>&,

const Vector2<type >&) throw () ;
Vector2 operator− (const Vector2<type>&,

const Vector2<type >&) throw () ;
Vector2 operator ∗ (type) throw () ;
//Matrix−Vector opera t i ons
Vector2 operator ∗ (const Matrix2&,

const Vector2 &) throw () ;
Vector2 operator ∗ (const Vector2&,

const Matrix2&) throw () ;

18.4 Functions

Most functions are self-descriptive, provided a knowledge of linear algebra.
Only two functions can throw exceptions, Matrix2::Invert and Vector2::Normalize.

If it is not possible to execute the function (say the matrix is non-invertible),
then these functions will throw the exception std :: domain error.

Also, notice that multiple functions are non-const. These functions are self
modifying; Vector2::Normalize will normalize the vector and store the normal-
ized version in the called vector.

106

18.5 Example code

void func (const Matrix2<double>&M)
{

// c a l c u l a t e M inve r s e
Matrix2<double> InverseM (M) ;
InverseM . Inve r t () ;

// check t ha t M ∗ Inver se i s the i d e n t i t y
Matrix2<double> I d en t i t y (1 , 0 ,

0 , 1) ;

i f (I d en t i t y == M ∗ InverseM)
{

cout << ”The matr i ce s are equal ! ” << endl ;
}
else
{

cout << ” Float ing po int e r r o r wins again ! ” << endl ;
}

}

107

A Team Sign Off Sheet

Jared Finder November 6, 2002
Producer
Graphics

John Corpening November 6, 2002
Technical Director
User Interface
AI

Nate Cleveland November 6, 2002
Designer
Action Interpretation
Sound

Austin Spafford November 6, 2002
Product Manager
Physics
Environment Simulator

Nathan Frost November 6, 2002
Tester
Networking
Message Handling

108

